Какой алкан может быть получен при гидрировании непредельного углеводорода – Вопрос: 2)какой алкан может быть получен при гидровании непредельного углеводорода, графическая формула которого HC=C-CH2-CH3? составьте уравнение реакции,назовите образующийся предельный углеводород

Содержание

Непредельные углеводороды. Алкены

Простейшим алкеном является этен C2H4.По номенклатуре IUPAC названия алкенов образуются от названий соответствующих алканов заменой суффикса «-ан» на «-ен»; положение двойной связи указывается арабской цифрой.

Пространственная структура этилена

По названию первого представителя этого ряда — этилена — такие углеводороды называют этиленовыми.

Номенклатура и изомерия

Алкены простого строения часто называют, заменяя суффикс -ан в алканах на -илен : этан — этилен, пропан — пропилен и т.д.

По систематической номенклатуре названия этиленовых углеводородов производят заменой суффикса -ан в соответствующих алканах на суффикс -ен (алкан — алкен, этан — этен, пропан — пропен и т.д.). Выбор главной цепи и порядок названия тот же, что и для алканов. Однако в состав цепи должна обязательно входить двойная связь. Нумерацию цепи начинают с того конца, к которому ближе расположена эта связь. Например:

Иногда используют и рациональные названия. В этом случае все алкеновые углеводороды рассматривают как замещенные этилена:

Непредельные (алкеновые) радикалы называют тривиальными названиями или по систематической номенклатуре:

Н2С = СН — — винил (этенил)

Н2С = CН — СН2— -аллил (пропенил-2)

Для алкенов характерны два вида структурной изомерии. Кроме изомерии, связанной со строением углеродного скелета (как у алканов), появляется изомерия, зависящая от положения двойной связи в цепи. Это приводит к увеличению числа изомеров в ряду алкенов.

Первые два члена гомологического ряда алкенов -(этилен и пропилен) — изомеров не имеют и их строение можно выразить так:

H2C = CH2 этилен (этен)

H2C = CH — CH3 пропилен (пропен)

H2C = CH — CH2 — CH3 бутен-1

H3C — CH = CH — CH3 бутен-2

Такая изомерия характерна для соединений с двойной связью.

Если простая σ -связь допускает свободное вращение отдельных звеньев углеродной цепи вокруг своей оси, то вокруг двойной связи такого вращения не происходит. Это и является причиной появления геометрических (цис-, транс-) изомеров.

Геометрическая изомерия — один из видов пространственной изомерии.

Изомеры, у которых одинаковые заместители (при разных углеродных атомах) расположены по одну сторону от двойной связи, называют цис-изомерами,а по разную — транс-изомерами:

Цис- и транс-изомеры отличаются не только пространственным строением, но и многими физическими и химическими свойствами. Транс-изомеры более устойчивы, чем цис-изомеры.

Получение алкенов

В природе алкены встречаются редко. Обычно газообразные алкены (этилен, пропилен, бутилены) выделяют из газов нефтепереработки (при крекинге) или попутных газов, а также из газов коксования угля.

В промышленности алкены получают дегидрированием алканов в присутствии катализатора (Сr

3).

H3C — CH2 — CH2 — CH3 → H2C = CH — CH2 — CH3 + H2↑ (бутен-1)

бутан

H3C — CH2 — CH2 — CH3 → H3C — CH = CH — CH3 + H2↑ (бутен-2)

Из лабораторных способов получения можно отметить следующие:

1. Отщепление галогеноводорода от галогеналкилов при действии на них спиртового раствора щелочи:

2. Гидрирование ацетилена в присутствии катализатора (Pd):

H-C ≡ C-H + H2 → H2C = CH2

3. Дегидратация спиртов (отщепление воды). В качестве катализатора используют кислоты (серную или фосфорную) или Аl2O3:

В таких реакциях водород отщепляется от наименее гидрогенизированного (с наименьшим числом водородных атомов) углеродною атома (правило А.М.Зайцева):

Физические свойства

Физические свойства некоторых алкенов показаны в таблице ниже. Первые три представителя гомологического ряда алкенов (этилен, пропилен и бутилен) — газы, начиная с C5H10 (амилен, или пентен-1) — жидкости, а с С18Н36 — твердые вещества. С увеличением молекулярной массы повышаются температуры плавления и кипения. Алкены нормального строения кипят при более высокой температуре, чем их изомеры, имеющие изостроение. Температуры кипения цис-изомеров выше, чем транс-изомеров, а температуры плавления — наоборот.

Алкены плохо растворимы в воде (однако лучше, чем соответствующие алканы), но хорошо — в органических растворителях. Этилен и пропилен горят коптящим пламенем.

Название

Формула

t пл,°С

t кип,°С

d204

Этилен (этен)

С2Н4

-169,1

-103,7

0,5700

Пропилен (пропен)

С3Н6

-187,6

-47,7

0,5193*

Бутилен (бутен-1)

C4H8

-185,3

-6,3

0,5951

Цис-бутен-2

С4Н8

-138,9

3,7

0,6213

Транс-бутен-2

С4Н8

-105,5

0,9

0,6042

Изобутилен (2-метилпропен)

С4Н8

-140,4

-7,0

0,5942*

Амилен (пентен-1)

C5H10

-165,2

+30,1

0,6405

Гексилен (гексен-1)

С6Н12

-139,8

63,5

0,6730

Гептилен (гептен-1)

C7H14

-119

93,6

0,6970

Октилен (октен-1)

C8H16

-101,7

121,3

0,7140

Нонилен (нонен-1)

C9H18

-81,4

146,8

0,7290

Децилен (децен-1)

С10Н20

-66,3

170,6

0,7410

* Жидкий

Алкены малополярны, но легко поляризуются.

Химические свойства

Алкены обладают значительной реакционной способностью. Их химические свойства определяются, главным образом, двойной углерод-углеродной связью.

π-Связь, как наименее прочная и более доступная, при действии реагента разрывается, а освободившиеся валентности углеродных атомов затрачиваются на присоединение атомов, из которых состоит молекула реагента. Это можно представить в виде схемы:

Таким образом, при реакциях присоединения двойная связь разрывается как бы наполовину (с сохранением σ-связи).

Для алкенов, кроме присоединения, характерны еще реакции окисления и полимеризации.

Реакции присоединения

Чаще реакции присоединения идут по гетеролитическому типу, являясь реакциями электрофильного присоединения.

1. Гидрирование (присоединение водорода). Алкены, присоединяя водород в присутствии катализаторов (Pt, Pd, Ni), переходят в предельные углеводороды — алканы:

Н2С = СН2 + H2 Н3С — СН3 (этан)

этилен

2. Галогенирование (присоединение галогенов). Галогены легко присоединяются по месту разрыва двойной связи с образованием дигалогенопроизводных:

Н2С = СН2 + Cl2 → ClH2C — CH2Cl (1,2-дихлорэтан)

Легче идет присоединение хлора и брома, труднее — иода. Фтор с алкенами, как и с алканами, взаимодействует со взрывом.

Сравните: у алкенов реакция галогенирования — процесс присоединения, а не замещения (как у алканов).

Реакцию галогенирования обычно проводят в растворителе при обычной температуре.

Присоединение брома и хлора к алкенам происходит по ионному, а не по радикальному механизму. Этот вывод следует из того, что скорость присоединения галогена не зависит от облучения, присутствия кислорода и других реагентов, инициирующих или ингибирующих радикальные процессы. На основании большого числа экспериментальных данных для этой реакции был предложен механизм, включающий несколько последовательных стадий. На первой стадии происходит поляризация молекулы галогена под действием электронов π-связи. Атом галогена, приобретающий некоторый дробный положительный заряд, образует с электронами π-связи нестабильный интермедиат, называемый π-комплексом или комплексом с переносом заряда. Следует отметить, что в π-комплексе галоген не образует направленной связи с каким-нибудь конкретным атомом углерода; в этом комплексе просто реализуется донорно-акцепторное взаимодействие электронной пары π-связи как донора и галогена как акцептора.

Далее π-комплекс превращается в циклический бромониевый ион. В процессе образования этого циклического катиона происходит гетеролитический разрыв связи Br-Br и пустая

р-орбиталь sp2-гибридизованного атома углерода перекрывается с р-орбиталью «неподеленной пары» электронов атома галогена, образуя циклический ион бромония.

На последней, третьей стадии анион брома как нуклеофильный агент атакует один из атомов углерода бромониевого иона. Нуклеофильная атака бромид-иона приводит к раскрытию трехчленного цикла и образованию вицинального дибромида (vic-рядом). Эту стадию формально можно рассматривать как нуклеофильное замещение SN2 у атома углерода, где уходящей группой является Br+.

Результат этой реакции нетрудно предвидеть: анион брома атакует карбкатион с образованием дибромэтана.

Быстрое обесцвечивание раствора брома в СCl4 служит одним из простейших тестов на ненасыщенность, поскольку и алкены, и алкины, и диены быстро реагируют с бромом.

Присоединение брома к алкенам (реакция бромирования) — качественная реакция на предельные углеводороды. При пропускании через бромную воду (раствор брома в воде) непредельных углеводородов желтая окраска исчезает (в случае предельных — сохраняется).

3. Гидрогалогенирование (присоединение галогеноводородов). Алкены легко присоединяют галогенводороды:

H2С = СН2 + НВr → Н3С — CH2Вr

Присоединение галогенводородов к гомологам этилена идет по правилу В.В.Марковникова (1837 — 1904): при обычных условиях водород галогенводорода присоединяется по месту двойной связи к наиболее гидрогенизированному атому углерода, а галоген — к менее гидрогенизированному:

Правило Марковникова можно объяснить тем, что у несимметричных алкенов (например, в пропилене) электронная плотность распределена неравномерно. Под влиянием метильной группы, связанной непосредственно с двойной связью, происходит смещение электронной плотности в сторону этой связи (на крайний углеродный атом).

Вследствие такого смещения p-связь поляризуется и на углеродных атомах возникают частичные заряды. Легко представить, что положительно заряженный ион водорода (протон) присоединится к атому углерода (электрофильное присоединение), имеющему частичный отрицательный заряд, а анион брома — к углероду с частичным положительным зарядом.

Такое присоединение является следствием взаимного влияния атомов в органической молекуле. Как известно, электроотрицательность атома углерода немного выше, чем водорода.

Поэтому в метильной группе наблюдается некоторая поляризация σ-связей С-Н, связанная со смещением электронной плотности от водородных атомов к углероду. В свою очередь это вызывает повышение электронной плотности в области двойной связи и особенно на ее крайнем, атоме. Таким образом, метильная группа, как и другие алкильные группы, выступает в качестве донора электронов. Однако в присутствии пероксидных соединений или О2 (когда реакция имеет радикальный характер) эта реакция может идти и против правила Марковникова.

По тем же причинам правило Марковникова соблюдается при присоединении к несимметричным алкенам не только галогеноводородов, но и других электрофильных реагентов (H2O, H24, НОСl, ICl и др.).

4. Гидратация (присоединение воды). В присутствии катализаторов [H2SO4 (конц.) и др.] к алкенам присоединяется вода с образованием спиртов. Например:

H3C — CH = CH2 + H — OH → H3C — CHOH — CH3 (изопропиловый спирт)

Реакции окисления

Алкены окисляются легче, чем алканы. Продукты, образованные при окислении алкенов, и их строение зависят от строения алкенов и от условий проведения этой реакции.

1. Горение

Н2С = СН2 + 3O2 → 2СO2 + 2Н2O

2. Неполное каталитическое окисление

3. Окисление при обычной температуре. При действии на этилен водного раствора КМnO4 (при нормальных условиях, в нейтральной или щелочной среде — реакция Вагнера) происходит образование двухатомного спирта — этиленгликоля:

3H2C = CH2 + 2KMnO4 + 4H2O → 3HOCH2 — CH2OH (этиленгликоль)+ 2MnO2 + KOH

Эта реакция является качественной: фиолетовая окраска раствора перманганата калия изменяется при добавлении к нему непредельного соединения.

В более жестких условиях (окисление КМnO4 в присутствии серной кислоты или хромовой смесью) в алкене происходит разрыв двойной связи с образованием кислородсодержащих продуктов:

H3C — CH = CH — CH3 + 2O2 → 2H3C — COOH (уксусная кислота)

Реакция изомеризации

При нагревании или в присутствии катализаторов алкены способны изомеризоваться — происходит перемещение двойной связи или установление изостроения.

Реакции полимеризации

За счет разрыва π-связей молекулы алкена могут соединяться друг с другом, образуя длинные цепные молекулы.

Нахождение в природе и физиологическая роль алкенов

В природе ациклические алкены практически не встречаются. Простейший представитель этого класса органических соединений — этилен C2H4 — является гормоном для растений и в незначительном количестве в них синтезируется.

Один из немногих природных алкенов — мускалур (цис-трикозен-9) является половым аттрактантом самки домашней мухи (Musca domestica).

Низшие алкены в высоких концентрациях обладают наркотическим эффектом. Высшие члены ряда также вызывают судороги и раздражение слизистых оболочек дыхательных путей

Отдельные представители

Этилен (этен) — органическое химическое соединение,описываемое формулой С2H4. Является простейшим алкеном . Содержит двойную связь и поэтому относится к ненасыщенным или непредельным углеводородам. Играет чрезвычайно важную роль в промышленности, а также является фитогормоном (низкомолекулярные органические вещества, вырабатываемые растениями и имеющие регуляторные функции).

Этилен — вызывает наркоз, обладает раздражающим и мутагенным действием.

Этилен — самое производимое органическое соединение в мире; общее мировое производство этилена в 2008 году составило 113 миллионов тонн и продолжает расти на 2-3% в год.

Этилен является ведущим продуктом основного органического синтеза и применяется для получения полиэтилена (1-е место, до 60 % всего объёма).

Полиэтилен — термопластичный полимер этилена . Самый распространенный в мире пластик.

Представляет собой воскообразную массу белого цвета (тонкие листы прозрачный бесцветны). Химически- и морозостоек, изолятор, не чувствителен к удару (амортизатор), при нагревании размягчается (80-120°С), при охлаждении застывает, адгезия (сцепление поверхностей разнородных твёрдых и/или жидких тел) — чрезвычайно низкая. Иногда в народном сознании отождествляется с целлофаном — похожим материалом растительного происхождения.

Пропилен — вызывает наркоз (сильнее, чем этилен), оказывает общетоксическое и мутагенное действие.

Устойчив к действию воды, не реагирует с щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже концентрированной серной кислоты, но разлагается при действии 50%-ой азотной кислоты при комнатной температуре и под воздействием жидкого и газообразного хлора и фтора. Со временем, происходит термостарение.

— Полиэтиленовая плёнка (особенно упаковочных, например, пузырчатая упаковка или скотч ).

— Тара ( бутылки , банки , ящики , канистры , садовые лейки , горшки для рассады.

— Полимерные трубы для канализации , дренажа , водо-, газоснабжения.

— Электроизоляционный материал.

— Полиэтиленовый порошок используется как термоклей.

Бутен-2 — вызывает наркоз, обладает раздражающим действием.

examchemistry.com

Углеводороды. Основные способы получения в промышленности и лаборатории.

Углеводороды разных классов (алканы, алкены, алкины, алкадиены, арены) можно получать различными способами.

Получение алканов

Крекинг алканов с изначально большей длиной цепи

Процесс, используемый в промышленности, протекает в интервале температур 450-500oC в присутствии катализатора и при температуре 500-700oC в отсутствие катализатора:

Важность промышленного процесса крекинга заключается в том, что он позволяет повысить выход бензина из тяжелых фракций нефти, которые не представляют существенной ценности сами по себе.

Гидрирование непредельных углеводородов

  • алкинов и алкадиенов:

Газификация каменного угля

в присутствии никелевого катализатора при повышенных температуре и давлении может быть использована для получения метана:

Процесс Фишера-Тропша

С помощью данного метода могут быть получены предельные углеводороды нормального строения, т.е. алканы. Синтез алканов осуществляют, используя синтез-газ (смеси угарного газа CO и водорода H2), который пропускают через катализаторы при высоких температуре и давлении:

Реакция Вюрца

С помощью данной реакции могут быть получены углеводороды с большим числом атомов углерода в цепи, чем в исходных углеводородах. Реакция протекает при действии на галогеналканы металлического натрия:

Декарбоксилирование солей карбоновых кислот

Сплавление твердых солей карбоновых кислот со щелочами приводит к реакции декарбоксилирования, при этом образуются углеводород с меньшим числом атомов углерода и карбонат металла (реакция Дюма):

Гидролиз карбида алюминия

Взаимодействие карбида алюминия с водой, а также кислотами-неокислителями приводит к образованию метана:

Al4C3 + 12H2O = 4Al(OH)3 + 3CH4

Al4C3 + 12HCl = 4AlCl3 + 3CH4

Получение алкенов

Крекинг алканов

Реакция в общем виде уже была рассмотрена выше (получение алканов). Пример реакции крекинга:

Дегидрогалогенирование галогеналканов

Дегидрогалогенирование галогеналканов протекает при действии на них спиртового раствора щелочи:

Дегидратация спиртов

Данный процесс протекает в присутствии концентрированной серной кислоты и нагревании до температуры более 140оС:

Обратите внимание, что и в случае дегидратации, и в случае дегидрогалогенирования отщепление низкомолекулярного продукта (воды или галогеноводорода) происходит по правилу Зайцева: водород отщепляется от менее гидрированного атома углерода.

Дегалогенирование вицинальных дигалогеналканов

Вицинальными дигалогеналканами называют такие производные углеводородов, у которых атомы хлора прикреплены к соседним атомам углеродной цепи.

Дегидрогалогенирование вицинальных галогеналканов можно осуществить, используя цинк или магний:

Дегидрирование алканов

Пропускание алканов над катализатором (Ni, Pt, Pd, Al2O3 или Cr2O3) при высокой температуре (400-600оС) приводит к образованию соответствующих алкенов:

Получение алкадиенов

Дегидрирование бутана и бутена-1

В настоящий момент основным методом производства бутадиена-1,3 (дивинила)  является каталитическое дегидрирование бутана, а также бутена-1, содержащихся в газах вторичной переработки нефти. Процесс проводят в присутствии катализатора на основе оксида хрома (III) при 500—650°С:

Действием высоких температур в присутствии катализаторов на изопентан (2-метилбутан) получают промышленно важный продукт – изопрен (исходное вещество для получения так называемого «натурального» каучука):

Метод Лебедева

Ранее (в Советском Союзе) бутадиен-1,3 получали по методу Лебедева из этанола:

Дегидрогалогенирование дигалогензамещенных алканов

Осуществляется действием на галогенпроизводные спиртового раствора щелочи:

Получение алкинов

Получение ацетилена
Пиролиз метана

При нагревании до температуры 1200-1500оС метан подвергается реакции дегидрирования с одновременным удваиванием углеродной цепи – образуются ацетилен и водород:

Гидролиз карбидов щелочных и щелочноземельных металлов

Действием на карбиды щелочных и щелочно-земельных металлов воды или кислот-неокислителей в лаборатории получают ацетилен. Наиболее дешев и, как следствие, наиболее доступен для использования карбид кальция:

Дегидрогалогенирование дигалогеналканов

Получение гомологов ацетилена

Дегидрогалогенирование дигалогеналканов:


Дегидрирование алканов и алкенов:

Получение ароматических углеводородов (аренов)

Декарбоксилирование солей ароматических карбоновых кислот

Сплавлением солей ароматических карбоновых кислот со щелочами удается получить ароматические углеводороды с меньшим числом атомов углерода в молекуле по сравнению с исходной солью:

Тримеризация ацетилена

При пропускании ацетилена при температуре 400°C над активированным углем с хорошим выходом образуется бензол:

Аналогичным способом можно получать симметричные триалкилзамещенные бензолы из гомологов ацетилена. Например:

Дегидрирование гомологов циклогексана

При действии на циклоалканы с 6-ю атомами углерода в цикле высокой температуры в присутствии платины происходит дегидрирование с образованием соответствующего ароматического углеводорода:

Дегидроциклизация

Также возможно получение ароматических углеводородов из углеводородов нециклического строения при наличии углеродной цепи с длиной в 6 или более атомов углерода (дегидроциклизация). Процесс осуществляют при высоких температурах в присутствии платины или любого другого катализатора гидрирования-дегидрирования (Pd, Ni):

Алкилирование

Получение гомологов бензола алкилированием ароматических углеводородов хлорпроизоводными алканов, алкенами или спиртами:


scienceforyou.ru

Углеводороды. Предельные углеводороды. Непредельные углеводороды. Циклоалканы., страница 13

Эта реакция протекает как транс-присоединение, т.е. атака реагентом протекает на 1-й и 2-й стадиях и происходит с разных сторон плоскости молекулы.

4) присоединение хлорноватистой кислоты:

Такие же продукты могут быть получены при хлорировании алкенов в водном растворе:

5)Присоединение С-электрофилов к алкенам. 

Алкены присоединяют С-электрофилы, например, карбокатионы, которые возникают из исходного алкена под действием кислот:

Если в реакционной смеси присутствует алкан с третичным атомом углерода, то произойдет передача водорода (гидрид-иона) и образуется i-октан(2,2,4 – триметилпентан):

Если в реакционной среде отсутствуют какие-либо лругие вещества, димерный катион может отдать протон, превращаясь в два алкена:

Это есть процесс димеризации алкена. Полученную смесь далее подвергают каталитическому гидрированию, получая i-октан.

6) Гидроборирование. По мере перехода к мало полярным растворителям и реагентам приобретают значение процессы согласованного присоединения Е+ и Nu.

3NaBH4 + 4BF3 → 2(BH3)2 + 3NaBF4

Диборан трудно выделить в индивидуальном состоянии, его получают по приведенной выше реакции. Диборан имеет сложное строение, поэтому при написании реакции гидроборирования используют формулу BH3:

R — CH=СН2 + BH3 → R – CH2-СН2-BH2 + R — CH=СН2

→ (R – CH2-СН2)2BH + R — CH=СН2 → (R – CH2-СН2)3B

7) Карбонилирование (гидроформилирование, оксо-синтез):

Реакция имеет промышленное значение – получение различных карбонилсодержащих соединений:

R — CH=СН2 + СО + Н2 → R – CH-С=О  + R – CH2-СН2-СНО

|      |

СН3 Н

Катализатор – Со; t, P.

СН2=СН2 + СО +Н2О → СН3-СН2-СООН

Алкины: Катализатор – Со; t, P.

ацетилен + СО + Н2О → СН2=СН-СООН акриловая кислота ацетилен + СО + НОR → СН2=СН-СООR сложный эфир        акриловой кислоты ацетилен + СО +NH3 → СН2=СН-СОNH2 амид АК

4.2.Реакции нуклеофильного присоединения АN.

Для алкенов и алкадиенов реакции нуклеофильного присоединения нехарактерны. Для того, чтобы двойная связь могла реагировать с нуклеофилом, необходимо, чтобы хотя бы один из атомов водорода у двойной связи был замещен на электроноакцепторную группу (-СООН, -СN).

У алкинов возможно осуществление реакций нуклеофильного присоединения  в присутствии катализаторов – ионов металлов, активирующих тройную связь, образуя с ней П-комплекс.

1) Гидратация:

R — CH=СН2 + НОН → R – CH(ОН) – СН3    кат. – Н2SO4

Реакция подчиняется правилу Марковникова:

Реакция Кучерова:

2) АN – реакции алкинов:

4.3.Радикальные реакции.

1) АR – реакции протекают с участием кратной связи:

R — CH=СН2 + НВr → R – CH2 — СН2 – Вr   кат.- R2О2

В условиях радикального процесса присоединение к нессиметричным алкенам (УВ) происходит против правила Марковникова – реакция Караша.

Механизм:

1)

2)

3)обрыв цепи по любой реакции с потерей радикальныхсвойств.

2) SR – реакции (участие связи С-Н):

СН2=СН-СН3 + Сl2 → СН2=СН-СН2 -Сl2 + НСl

Механизм аналогичен реакции SR – алканов.

Стабильность радикалов: винильный < перв. < втор. < трет. < аллильный, следовательно у непредельных УВ в реакциях радикального замещения наиболее активное альфа-положение по отношению к кратным связям, т.е. аллильное положение.

4.4. Реакции восстановления.

Для этого используют активный водород, получаемый в момент выделения (натрий в этаноле, металл + кислота, натрий в жидком аммиаке…). Другой метод – каталитическое гидрирование, т.е. присоединение молекулярного водорода в присутствии катализатора – мелкодисперсной платины, палладия, никеля.

4.5. Реакции окисления.

Источник кислорода – окислитель [О]. Алкены благодаря П-связи легко подвергаются окислению. В зависимости от активности окислителя и условий реакции могут быть получены продукты с различным содержанием кислорода: эпоксиды, двухатомные спирты, альдегиды и кетоны, карбоновые кислоты.

Алкины менее активны.

1)  Эпоксидирование:

2) Гидрокарбоксилирование: KMnO4 в нейтральной и слабощелочной среде – реактив Вагнера:

3) Озонирование (озонолиз):

vunivere.ru

Непредельные углеводороды. Алкины

Строение алкинов

Первым и основным представителем гомологического ряда алкинов является ацетилен (этин) С2Н2. Строение его молекулы выражается формулами:

структурная формула

Н — С ≡ С — Н

или

электронная формула

Н:С:::С:Н

По названию первого представителя этого ряда — ацетилена — эти непредельные углеводороды называют ацетиленовыми.

В алкинах атомы углерода находятся в третьем валентном состоянии (sp-гибридизация). В этом случае между углеродными атомами возникает тройная связь, состоящая из одной σ — и двух π -связей. Длина тройной связи равна 0,12 нм, а энергия ее образования составляет 830 кДж/моль.

Номенклатура

Простейшим алкином является этин (ацетилен С2Н2). По номенклатуре IUPAC названия алкинов образуются от названий соответствующих алканов заменой суффикса «-ан» на «-ин»; положение тройной связи указывается арабской цифрой.

Углеводородные радикалы, образованные от алкинов имеют суффикс «-инил», так CH-C- называется «этинил».

Гомологический ряд

Этин:C2H2 Пропин: C3H4 Бутин: C4H6 Пентин: C5H8 Гексин: C6H10 Гептин: C7H12 Октин: C8H14 Нонин: C9H16 Децин: C10H18

Изомерия

Изомерия алкиновых углеводородов (как и алкеновых) определяется строением цепи и положением в ней кратной (тройной) связи:

(такая же как у алканов и алкенов)

З-метилбутин-1

Н — С ≡ С — СН2 — СН2 — СН3 пентин-1

Н3С — С ≡ С — СН2 — СН3 пентин-2

Алкины являются изомерами с алкадиенами.

Физические свойства алкинов

Алкины по своим физическим свойствам напоминают соответствующие алкены. Низшие (до С4) — газы без цвета и запаха, имеющие более высокие температуры кипения, чем аналоги в алкенах. Алкины плохо растворимы в воде, лучше — в органических растворителях.

Плохо растворимы в воде.

Химические свойства

Химические свойства алкинов определяются тройной связью, особенностями ее строения. Алкины способны вступать в реакции присоединения, замещения, полимеризации и окисления.

Будучи непредельными соединениями, алкины вступают в первую очередь в реакции присоединения. Эти реакции протекают ступенчато: с присоединением одной молекулы реагента тройная связь вначале переходит в двойную, а затем, по мере дальнейшего присоединения, — в одинарную.

Казалось бы, алкины, обладая двумя π-связями, гораздо активнее должны вступать в реакции электрофильного присоединения. Но это не совсем так. Углеродные атомы в молекулах алкинов расположены ближе друг к другу, чем в алкенах, и обладают большей электроотрицательностью. Это связано с тем, что электроотрицательность атома углерода зависит от его валентного состояния. Поэтому p-электроны, находясь ближе к ядрам углерода, проявляют несколько меньшую активность в реакциях электрофильного присоединения. Кроме того, сказывается, близость положительно заряженных ядер атомов, способных отталкивать приближающиеся электрофильные реагенты (катионы). В то же время алкины могут вступать в реакции нуклеофильиого присоединения (со спиртами, аммиаком и др.).

Реакция протекает в тех же условиях, что и в случае алкенов (катализаторы Pt, Pd, Ni). При восстановлении алкинов вначале образуются алкены, а затем — алканы:

HC ≡ CH + H2 → H2C = CH2 + H2 → H3C—CH3

ацетилен → этилен → этан

Эта реакция протекает с меньшей скоростью, чем в ряду этиленовых углеводородов. Реакция также проходит ступенчато:

HC ≡ CH + Br2 → CHBr = CHBr + Br2 → CHBr2 — CHBr2

ацетилен → 1,2-дибромэтан → 1,1,2,2-тетрабромэтан

Качественная реакция; бромная вода обесцвечивается.

Реакции присоединения галогеноводородов, как и галогенов, идут в основном по механизму электрофильного присоединения:

HC ≡ CH + HCl → H2C = CHCl → H3C — CHCl2

ацетилен → хлорэтен → 1,1-дихлорэтан

Вторая молекула галогеноводорода присоединяется в соответствии с правилом Марковникова.

Образуется ацетальдегид в случае С2Н2 и кетоны — в случае гомологов ацетилена.

Катализатор — соль ртути: HgSO4

HC ≡ CH + HCN кат.→ H2C = CH — CN (акрилонитрил)

Акрилонитрил — ценный продукт. Он используется в качестве мономера для получения синтетического волокна — нитрон.

В результате этой реакции образуются простые виниловые эфиры (реакция А. Е.Фаворского):

HC ≡ CH + HO — C2H5KOH→ H2C = CH — O — C2H5 (этилвиниловый эфир)

Присоединение спиртов в присутствии алкоголятов — типичная реакция нуклеофильного присоединения.

Водородные атомы в ацетилене способны замещаться на металлы (реакция металлирования). В результате образуются металлические производные ацетилена — ацетилениды. Такую способность ацетилена можно объяснить следующим образом. Углеродные атомы ацетилена, находясь в состоянии sp-гибридизации, отличаются, как известно, повышенной электроотрицательностью (по сравнению с углеродами в других гибридных состояниях). Поэтому электронная плотность связи С-H несколько смещена в сторону углерода и атом водорода приобретает некоторую подвижность:

d+ d- d- d+

H→C≡C←H

Образуются нерастворимые соли — ацетилениды. Возможны только для алкинов, содержащих этинильную группу -С=СН (т. н. терминальные алкины).

HC ≡ CH + 2CuCl → Cu — C ≡ C — Cu↓ + HCl

этин → ацетиленид меди(I) двузамещенный

CH3 — C ≡ CH + CuCl → CH3 — C ≡ C- Cu↓ + HCl

пропин → метилацетиленид меди (I)

Образование темно-красных осадков ацетиленидов меди — качественная реакция на этинильную группу, позволяющая отличить терминальные алкины от других непредельных углеводородов.

С ацетиленидами в сухом виде следует обращаться очень осторожно: они крайне взрывоопасны.

Ацетиленовые углеводороды, как алканы и алкены, способны к изомеризации с перемещением тройной связи:

Н3С — СН2— С ≡ СН Na(спирт р-р)→ Н3С — С ≡ С — СН3

бутин-1 → бутин-2

Из винилацетилена присоединением HCl получают хлоропрен, при полимеризации которого образуется хлоропреновый каучук:

Полимеризация для алкинов малохарактерна.

Ацетилены легко окисляются. При этом происходит разрыв молекулы по месту тройной связи. Если ацетилен пропускать через окислитель (водный раствор перманганата калия), то раствор быстро обесцвечивается. Эта реакция является качественной на кратные (двойные и тройные) связи:

3НC ≡ СН + 10KMnO4 + 2H2O → 6CO2 + 10КОН + 10MnO2

Ацетилен горит коптящим пламенем.

При полном сгорании ацетилена на воздухе образуются два продукта оксид углерода (IV) и вода:

2НС ≡ СН + 5O2 → 4СO2 + 2Н2O

При неполном сгорании образуется углерод (сажа):

НС ≡ СН + O2 → С + СО + Н2О

Способы получения

Ацетилен в промышленности и в лаборатории можно получать следующими способами:

Разложением водой карбида кальция СаС2, который получают спеканием негашеной извести СаО с коксом:

СаО + 3C 2500°C→ CaC2 + CO

СаС2 + 2Н2O → НС ≡ СН + Са(ОН)2

2СН41500°C→ НС ≡ СН + 3Н2

или этана:

С2Н61200°C→ НС ≡ СН + 2Н2

Из дигапогеналканов, содержащих атомы галогена у двух соседних атомов углерода, например:

Из дигалогеналканов, содержащих два атома галогена у одного атома углерода, например:

Качественные реакции

Качественной реакцией на алкины с концевой тройной связью является взаимодействие с аммиакатом серебра или меди.

Для подтверждения наличия тройной связи в соединении используют методы спектроскопии.

Применение

Из всех ацетиленовых углеводородов серьёзное промышленное значение имеет только ацетилен, который является важнейшим химическим сырьём. Его применяют:

— для сварки и резки металлов;

— как источник очень яркого, белого света в автономных светильниках, где он получается реакцией карбида кальция и воды;

— в производстве взрывчатых веществ ацетиленидов (соли ацетилена и его производных, в котором один или два атома водорода замещены атомами элементов, более электроположительных, чем углерод;

Ацетилениды тяжелых металлов обладают значительной химической неустойчивостью, при незначительных внешних воздействиях (удар, трение) разлагаются со взрывом. Наиболее известны как инициирующие взрывчатые вещества (ВВ) ацетилениды серебра Ag2C2 и меди Cu2C2. Также следует отметить сильнейшие взрывчатые способности ацетеленида ртути. Очень сильными взрывчатыми свойствами обладает ацетеленид золота.

— для получения уксусной кислоты, этилового спирта;

— для получения растворителей — индивидуальное химическое соединение или их смесь, способная растворять различные вещества, то есть образовывать с ними однородные системы переменного состава двух или большего числа компонентов;

— для получения пластических масс — органические материалы, основой которых являются синтетические или природные высокомолекулярные соединения (полимеры). Исключительно широкое применение получили пластмассы на основе синтетических полимеров.

Название «пластмассы» означает, что эти материалы под действием нагревания и давления способны формироваться и сохранять после охлаждения или отвердения заданную форму. Процесс формования сопровождается переходом пластически деформируемого (вязкотекучего) состояния в стеклообразное состояние.

— для получения каучука — натуральные или синтетические эластомеры, характеризующиеся эластичностью, водонепроницаемостью и электроизоляционными свойствами, из которых путём вулканизации получают резины и эбониты.

Нахождение в природе и физиологическая роль алкинов

В природе алкины практически не встречаются. В некоторых видах грибов Basidiomycetes были обнаружены в крайне малом количестве соединения содержащие полиацетиленовые структуры.

Ацетилен обнаружен в атмосфере Урана, Юпитера и Сатурна.

Алкины обладают слабым наркозным действием. Жидкие алкины вызывают судороги.

examchemistry.com

Глава 4. ДИЕНОВЫЕ УГЛЕВОДОРОДЫ


⇐ ПредыдущаяСтр 2 из 13Следующая ⇒

 

Диеновые углеводороды – ненасыщенные углеводороды состава СnН2n-2, молекулы которых в углеродном скелете содержат две двойные связи.

В зависимости от расположения двойных связей различают алкадиены с кумулированными двойными связями( алкадиены 1,2 или аллены), сопряженные и несопряженные диены.

Аллены – это алкадиены, у которых обе двойные связи находятся у одного атома углерода, например, Н2С=С=СН2 .

Несопряженные диены – это диены, в которых между двойными связями стоит больше одной одинарной связи, например, гексадиен-1,5 :

СН2=СН−СН2−СН2−СН=СН2 .

Наибольший интерес представляют сопряженные диены, в которых двойные связи разделены в цепи только одной σ-связью, например, СН2=СН−СН=СН2 СН2=С−СН=СН2

│‌

СН3

бутадиен-1,3 (дивинил) 2-метилбутадиен-1,3 (изопрен)

Сопряженные диены имеют большое практическое значение , так как являются исходным сырьем для получения синтетических полимерных материалов, поэтому далее мы рассмотрим только их.

В сопряженных диенах π-электронные облака двойных связей перекрываются между собой, образуя единое π-электронное облако, при этом π-электроны не принадлежат определенным связям, а делокализованы по всем атомам (π – π — сопряжение), как например в молекуле бутадиена:

 

 

4.1. Получение сопряжённых алкадиенов

1. Основной промышленный способ получения диенов –

Дегидрирование алканов.

Бутадиен получают из бутан-бутеновой фракции, выделяемой при крекинге нефти:

t,Сr2O3

СН3−СН2−СН2−СН3 СН2=СН−СН=СН2 + 2Н2

Аналогичным способом получают изопрен из изопентан-изопентеновой фракции крекинга нефти:

t,Cr2O3,Al2O3

СН3−СН(СН3) −СН2−СН3 СН2=С(СН3)−СН=СН2 + 2Н2

2. По методу Лебедева бутадиен-1,3 получают в результате одновременно протекающих процессов дегидратации и дегидрирования на смешанных катализаторах:

t, Al2O3 / ZnO

2Н5ОН СН2=СН−СН=СН2 + 2Н2О + Н2

3. Дегидратация диолов :

Н3РО4,NаРО3

СН2(ОН) −СН2−СН2−СН2(ОН) СН2=СН−СН=СН2 + 2Н2О

 

Al2O3

СН3−СН(ОН) −СН2−СН2(ОН) СН2=С−СН=СН2 + 2Н2О

│ │

СН3 СН3

Бутадиен-1,3легко сжижающийся газ с неприятным запахом. Изопрен- легкокипящая жидкость (t кип=34 0С).

 

4.2. Химические свойства алкадиенов

 

Все четыре атома углерода в бутадиене -1,3 находятся в sp2-гибридном состоянии. В результате бокового перекрывания р-орбиталей всех четырех атомов углерода образуется единое π-электронное облако. Это приводит к тому, что для диеновых углеводородов характерны реакции электрофильного присоединения, но из-за сопряжения двойные связи в их молекулах функционируют как единое целое, поэтому в результате присоединения одного моль реагента образуется два продукта: по концам сопряженной системы (1,4- присоединение, с перемещением двойной связи в центр) или к одной из двойных связей (1,2- присоединение). Cоотношение продуктов присоединения зависит от конкретных условий – температуры реакции, природы растворителя.

Галогенирование

CCI4

2СН2=СН−СН=СН2 + 2Вr2 ВrСН2−СН=СН−СН2Вr +

1,4-дибромбутен-2(80% при 40оС)

+ ВrСН2СНВrСН =СН2

3,4-дибромбутен-1 (20% при 400C)

 

CCI4

СН2 = СН−СН=СН2 + 2Вr2 ВrСН2−СНВr−СНВr−СН2Вr

1,2,3,4 – тетрабромбутан

 

2. Гидрогалогенирование — присоединение галогеноводородов ( по правилуМарковникова).

СН2=СН−СН=СН2 + НВr СН3−СН=СН−СН2Br(основной продукт)

4-бромбутен-2

СН3СНВrСН=СН2

3-бромбутен-1

 

СН2=СН−С=СН2 + НВr СН2=СH−СBr−СН3 +

| |

СН3 СН3

3-бром-3-метилбутен-1

 

СН3−С=СН−СН2Br

|

СН3

4-бром-2-метилбутен-2

 

СН2=СН−СН=СН2 + 2 НВr CН3−СНВr−СН2−СН2Вr

1,3-дибромбутан

3. Гидрирование.

 

Рt, t0

СН2=СН−СН=СН2 + Н2 СН3−СН=СН−СН3 + СН2=СН−СН2−СН3

бутен-2 бутен-1

Pt, t0

CH2=CН−СН=СН2 + 2 Н2 СН3−СН2−СН2−СН3

 

Полимеризация.

Диеновые углеводороды легко полимеризуются в присутствии многих катализаторов, в частности в кислой среде при нагревании: Полимеризация бутадиена-1,3 обычно происходит как 1,4-присоединение, но с примесью 1,2-полимера. СН2=СН−СН=СН2 [−СН2−СН=СН−СН2−]n

 

При полимеризации 2-метилбутадиена-1,3 получают синтетический каучук:

 

СН2=С−СН=СН2 [СН2−С=СН−СН2−]n

│ │

СН3 СН3

 

4.3.Примеры решения задач

Пример15. При полном каталитическом гидрировании некоторого диенового углеводорода массой 6,8г было получено 7,2г алкана. Определите формулу исходного алкадиена, напишите и назовите не менее четырёх его возможных изомеров.

Решение:

1) Напишем уравнение реакции гидрирования диенов:

СnН2n-2 + 2Н2 = СnН2n+2

2) Вычислим массу и количество водорода, вступившего в реакцию:

m(Н2) = 7,2 -6,8 = 0,4 (г) ; n (Н2) = m(Н2)/М(Н2) = 0,4/2 =0,2 (моль)

3) В соответствии с уравнением, в реакцию гидрирования вступает в 2 раза меньшее количество диена:

n(СnН2n-2) =n/(Н2)/ =0,2/2 = 0,1 (моль)

4) Определяем молярную массу и формулу диенового углеводорода:

М(СnН2n-2) = m (СnН2n-2)/n (СnН2n-2) =6,8/0,1 =68 (г/моль).

12n + 2n -2 = 68

14n=70, n=5, поэтому формула исходного вещества С5Н8

5) Напишем формулы и назовём его изомеры:

СН2 = СН−СН = СН − СН3 пентадиен – 1,3

СН2 = СН – СН2 − СН = СН2 пентадиен – 1,4

СН3 – СН = С = СН – СН3 пентадиен – 2,3

СН2 = С = С(СН3 ) – СН3 3 – метилбутадиен – 1,2

 

4.4.Задачи и упражнения для самостоятельного решения

104. Сколько диеновых углеводородов изомерно пентину-1? Напишите формулы этих веществ и назовите их по систематической номенклатуре.

105. Напишите структурные формулы изомеров состава С6Н10 и назовите их по систематической номенклатуре.

106. Приведите формулу метилгексадиена, существующего в форме четырех пространственных изомеров.

107. Углеводород Х, подвергающийся полимеризации, в реакции с избытком брома образует соединение состава С5Н8Вч4 , а при гидрировании превращается в разветвленный углеводород С5Н12. Назовите соединение Х и напишите уравнения реакций.

108. Реакции присоединения характерны для каждого из веществ, приведенных в ряду:

1) этин, 2- метилбутен-1, изобутан

2) этен, пропин, бутадиен-1,3

3) 2-бромбутан, пропилен, ацетальдегид

4) формальдегид, пропан, этилен.

Выберите правильный ответ.

109. С какими из перечисленных ниже веществ будет взаимодействовать изопрен: Н2, Nа, НВч, Вч2, NаОН, О2 ? Напишите уравнения соответствующих реакций.

110. Исходя из углерода и любых неорганических реагентов получите бутадиен-1,3.

111. Как можно выделить бутадиен-1,3 из его смеси с бутином-1 и этином?

112. Натуральный каучук представляет собой:

а) цис-полибутадиен, б)цис-полиизопрен, в) полиметилметакрилат, г)цис-полихлоропрен? Выберите правильный ответ .

113. Какое вещество может быть использовано как исходное для получения синтетического каучука:

а) СаС2 ; б)С2Н5ОН; в) С6Н5–СН=СН2; г) природный газ?

Выберите правильный ответ.

114. Хлоропреновый каучук получают из:

1) СНС1=СНС1 2) СН2=СС1−СН=СН2 3) СН2=СН−СН=СНС1 4)СН≡СС1. Выберите правильный ответ.

115. При полном гидрировании смеси трех изомеров, один из которых бутадиен-1,3, был получен только один алкан. Предложите структурные формулы соединений, которые могут быть получены при обработке НВr этой смеси изомеров, назовите все соединения.

116.Напишите уравнение реакции присоединения 1 моль брома к 1 моль бутадиена.

117. С какими из перечисленных ниже веществ будет взаимодействовать изопрен: Н2, K, KВr, Cl2, изопрен ? Напишите уравнения соответствующих реакций.

118. Относительная плотность некоторого алкадиена по гелию равна 13,5. Определите углеводород, напишите формулы его изомеров и назовите их.

119. После прохождения смеси бутадиена-1,3 и избытка водорода над нагретым платиновым катализатором ее плотность возросла на 20%. Определите объемную долю бутадиена-1,3 в исходной смеси.

120. Замкнутый сосуд наполнили находящимся в газообразном состоянии алкадиеном. При полном термическом разложении углеводорода на элементы давление в сосуде увеличилось в 4 раза (при неизменной температуре). Укажите все углеводороды, которые могли бы дать подобный результат.

121. Определите объем водорода, который потребуется для полного каталитического гидрирования 45,56 л (н.у.) смеси пропена и бутадиена-1,3, если плотность смеси равна 2,143 г/л (н.у.).

122. Смесь этилена и диенового углеводорода разветвленного строения объемом 4,48 л (н.у.) обесцвечивает 148 мл раствора брома в тетрахлориде углерода с массовой долей брома 15% и плотностью 1,8г/мл. Определите структурную формулу диенового углеводорода, если известно, что при сжигании такого же количества исходной смеси образуется 9 г воды.

123. При полном каталитическом гидрировании некоторого диенового углеводорода массой 24,6 г получено 25,8 г предельного соединения. Определите формулу исходного алкадиена, напишите структурные формулы и назовите не менее пяти его возможных изомеров.

124. На сжигание одного объема паров некоторого диенового углеводорода требуется объем воздуха, в 33,3 раза больший объема паров сожженного углеводорода (объемы газов измерены при одинаковых условиях). Напишите структурные формулы его возможных изомеров и назовите их по систематической номенклатуре.

125. Для полного каталитического гидрирования 3,45 г смеси бутадиена и пропена требуется водород объемом 2,41 л (11оС; 98 кПа). Определите объемные доли газов в исходной смеси.

126. Раствор алкадиена в н- гексане, в котором массовая доля алкадиена составляла ровно 20%, подвергли гидрированию в присутствии никелевого катализатора. После завершения гидрирования массовая доля образовавшегося алкана составила 20,7730%. Определите формулу исходного алкадиена и напишите структурные формулы его изомеров.

 

Глава 5. АЛКИНЫ

 

Алкины- ненасыщенные углеводороды с одной тройной связью, относящиеся к гомологическому ряду соединений с общей формулой

CnH2n-2 . Название алкинов образуется из названий соответствующих алканов заменой суффикса -ан на суффикс -ин. Для алкинов возможна структурная изомерия, обусловленная изомерией углеродного скелета, изомерия положения тройной связи и межклассовая изомерия (алкины и алкадиены).

По физическим свойствам алкины напоминают алканы и алкены. Низшие алкины С2 –С4 представляют собой бесцветные газы, С516— жидкости, высшие алкины– твердые вещества.

Температуры кипения алкинов несколько выше, чем у соответствующих алкенов. Подобно алканам и алкенам, алкины нерастворимы в воде, но растворимы в полярных растворителях.

 

5.1. Получение алкинов

 

1. Реакция пиролиза (промышленный способ получения ацетилена путем высокотемпературного крекинга метана):

1500о С

2СН4 НС≡СН + 3Н2

 

1200оС

2 С2Н6 С2Н2 + 2Н2

 


Рекомендуемые страницы:

lektsia.com

Гидрирование непредельных углеводородов — Справочник химика 21

Таблица 6. Равновесная глубина гидрирования непредельных углеводородов

    Для гидрирования непредельных углеводородов в риформатах используются алюмоплатиновые катализаторы АП-10 и АП-15, характеристика которых приведена ниже  [c.31]

    Во фракции бензина пиролиза, выкипающей в пределах 70 — 150 С, содержатся значительные количества бензола и других ароматических углеводородов, которые извлекают методом экстракции. Процессу экстракции предшествует гидрирование непредельных углеводородов, содержащихся в бензине, прошедшем холодную гидроочистку от диеновых углеводородов. Гидрирование ведут на алюмокобальтмолибденовом катализаторе при 5 МПа, 360 °С и объемной скорости подачи сырья до 2 ч до остаточного содержания серы 0,001—0,005% (масс.). При этом гидрируются и олефиновые углеводороды. Гидрирование применяют и для получения низших олефинов, а также для удаления ацетилена и его производных из газа пиролиза или из его этан-этиленовой фракции [16]. [c.18]

    Равновесные глубины гидрирования непредельных углеводородов Сг— [c.21]

    Количество серы, удаленное из сырья, Д8 = 1,8% (масс,). Глубину гидрирования непредельных углеводородов можно принять равной глубине обессеривания ДСн = Сн-0,9= 10-0,9 = 9% (масс,). [c.152]

    Особенностью схемы отечественных установок риформинга для производства ароматических углеводородов (установки Л-35-6, Л-35-8, Л-35-12 и Л-35-13) является наличие дополнительного реактора для гидрирования непредельных углеводородов, находящихся в катализате. Выходящие из реактора Р-4 продукты реакции вместе с циркулирующим водородсодержащим газом охлаждаются, а затем поступают в дополнительный реактор, загруженный алюмоплатиновым катализатором АП-10 или АЛ-15, содержащим около 0,1% платины (на рис. 4 дополнительный реактор и система теплообменников не показаны). Такая схема установки каталитического риформинга позволяет исключить из блоков экстракции стадию очистки ароматических углеводородов от непредельных. [c.23]

    Расход водорода па гидрирование непредельных углеводородов равен [c.145]

    Из кипятильников Т-5, Т-6 газопродуктовая смесь поступает в реактор селективного гидрирования Р-6 для гидрирования непредельных углеводородов и затем в теплообменники Т-411,2. [c.120]

    При гидрировании продуктов вторичного происхождения (крекинг, пиролиз) возникают трудности селективного удаления ацетиленовых и диеновых углеводородов без вовлечения в реакцию олефинов или глубокого гидрирования непредельных углеводородов без участия в реакции ароматических углеводородов и т. д. [c.21]

    Количество теила, выделяемое ири гидрировании непредельных углеводородов, равно 126 000 кДж/моль. Тогда [c.152]

    СЕЛЕКТИВНОЕ ГИДРИРОВАНИЕ НЕПРЕДЕЛЬНЫХ УГЛЕВОДОРОДОВ [c.31]

    Из данных табл. 6 видно, что полное гидрирование непредельных углеводородов становится термодинамически возможным при давлении выше 200 ат и температуре до 427°С (700° К). [c.22]

    Все сказанное свидетельствует о том, что в условиях, необходимых для проведения основных реакций гидрогенизационной переработки топлив, могут протекать также реакции коксообразования. Увеличивая скорость гидрирования непредельных углеводородов по сравнению со скоростью их конденсации с ароматическими углеводородами или полимеризации, можно снизить количество кокса. Для этого необходимо повышать парциальное давление водорода (и общее давление в системе) и применять специфические катализаторы. Однако при 150—200 ат подавить реакции коксообразования полностью не удается, и процесс приходится вести с периодической регенерацией катализатора. При [c.29]

    Для катализаторов гидроочистки и катализаторов селективного гидрирования непредельных углеводородов достигнута высокая удельная производительность для АКМ и АНМ — до 200 т/кг, для АП-10 и АП-15 — до 80—120 т/кг (для катализаторов селективного гидрирования известны случаи и более высокой удельной производительности, доходящей до 200—290 т/кг). Продолжительность эксплуатации катализаторов экономична, если длительность межрегенерационных циклов по мере отработки катализатора не уменьшается. На многих установках достигают годовых межрегенерационных циклов в различные периоды работы катализатора, при этом отбор катализата и октановое число поддерживается на первоначальном уровне эксплуатации. [c.209]

    Параллельно протекают реакции дегидрирования, изомеризации и крекинга с последующим гидрированием непредельных углеводородов. Одновременно в некоторой степени на активных центрах гидрирования-дегидрирования проходят реакции следующего типа  [c.245]

    Назначение. Улучшение качества и повышение стабильности топлив и масел, удаление сернистых, азотистых, кислородсодержащих соединений, гидрирование непредельных углеводородов. [c.69]

    Катализатор кобальт-магниевый (индекс 71—и31) [74, 75]. Применяется для получения парафиновых углеводородов из окиси углерода и водорода. Может также использоваться в процессах гидрирования непредельных углеводородов. [c.418]

Рис. 6. Расчетные равновесные глубины гидрирования непредельных углеводородов прн атмосферном давлении

    Из сопутствующих обессериванию реакций особый интерес представляет гидрирование непредельных углеводородов. Обычные условия гидроочистки термодинамически благоприятствуют насыщению водородом не- [c.36]

    Преобладание изомерных соединений в продуктах гидрокрекинга объясняют также изомеризацией непредельных углеводородов, являющихся первичными промежуточными продуктами каталитического расщепления насыщенных углеводородов над катализаторами с носителями типа активных алюмосиликатов. Гидрирование непредельных углеводородов изостроения приводит к накоплению изопарафинов в продуктах гидрокрекинга. Эта схема образования избытка изопарафинов подтверждается экспериментальными данными, свидетельствующими о трудности непосредственной каталитической изомеризации нормальных парафинов [30] как первичной реакции гидрокрекинга. Кроме того, общеизвестна легкость и быстрота изомеризации олефинов над активными алюмосиликатами и легкость гидрирования получающихся изоолефинов даже за счет реакций дис-пропорционирования, характерных для каталитического крекинга. [c.43]

    На рис. 43 показана зависимость селективной гидроочистки на алюмокобальтмолибденовом катализаторе бензина термического крекинга от удельной объемной скорости подачи сырья и температуры [44]. В результате гидроочистки в связи с высокой степенью гидрирования непредельных углеводородов (50—60%) октановое число бензинов снижается, [c.198]

    Полученная величина в дальнейших расчетах уточняется после определения количества водорода, вошедшего в состав дизельного топлива при гидрогенолнзе сернистых соединений и гидрировании непредельных углеводородов. Полученные значения выхода газа, бензина и дизельного топлива далее будут использованы при составлении материального баланса установки и реактора гидроочистки. [c.144]

    О влиянии удельной объемной скорости подачи сырья на процесс можно судить по данным рис. 50 и 51, Изменение степени гидрирования непредельных углеводородов в интервале удельных скоростей подачи сырья от 1,0 до 15,0 ч при общем давлении 40 ат и подаче газа, содержащего 65 объемн. % водорода, 500 м /м сырья происходит по сравнению с гидрированием сернистых соединений более плавно. При температуре около 300°С скорости гидрирования непредельных углеводородов и сернистых соединений при- [c.207]

    В табл. 15 даны константы равновесия и тепловые эффекты реакций гидрирования непредельных углеводородов и гидрокрекинга этана и пропана. [c.63]

    Как следует из таблицы, гидрирование непредельных углеводородов в интервале 300—400 °С практически может протекать нацело. Такие же благоприятные термодинамические условия имеются и для гидрокрекинга предельных углеводородов, однако гидрокрекинг предельных углеводородов Сз—Св не идет на катализаторах, содержащих серу, и при наличии сернистых соединений в газе. Этот процесс осуществляют на никелевых катализаторах после предварительной тонкой очистки газа от сернистых соединений. [c.63]

    Опыты показали, что гидрирование непредельных углеводородов протекает полностью, в то же время гидрокрекинг предельных углеводородов не наблюдался. [c.65]

    При перемешивании проводится селективное гидрирование непредельных углеводородов в 4—6 циклов с заменой водорода. В гидрированном продукте, имеющем йодное число не выше 1,0, определяют сульфированием суммарное содержание ароматических углеводородов. [c.519]

    Из подогревателя газ поступает в реактор Р-1. Здесь происходит гидрирование непредельных углеводородов при температуре 150°С [c.168]

    Сырье (рис. 70), подлежащее гидроочистке, смешивается с водородсодержащим газом, нагревается в теплообменниках Т-1, Т-2 и печи П-1 и поступает в каталитические реакторы Р-1 и Р-2. В реакторах происходит разложение гетероциклических соединений и гидрирование непредельных углеводородов. Продукты реакции вместе с водородсодержащим газом охлаждаются в рекуперативных теплообмергниках Т-1, Т-2 и холодильнике Х- . В сепараторе высокого давления С-1 отделяется газовая фаза и направляется в установку очистки от сероводорода. Жидкая фаза из С-1 направляется в сепаратор низкого давле- [c.222]

    Водород в процессе гидроочистки расходуется на I) гидроге-иолиз сероорганических соединений, 2) гидрирование непредельных углеводородов, 3) потери водорода с отходящими потоками (отдувом и жидким гидрогеиизатом). [c.145]

    Подготовка сырья риформинга включает ректификацию и гндро-бчистку. Ректификация используется для выделения определенных фракций бензинов в зависимости от назначения процесса. При гидроочистке из сырья удаляют примеси (сера, азот и др.), отравляющие катализаторы ри юрмннга, а при переработке бензинов вторичного происхождения подвергают также гидрированию непредельные углеводороды. [c.105]

    Чтобы выделенные ароматические, углеводороды отвечали по своим качествам современным требованиям, их подвергают очистке от непредельных углеводородов, пропуская над активированной глиной при Ail80 °С. Та же цель может быть достигнута при селективном гидрировании содержащихся в риформатах непредельных углеводородов. Отечественные установки риформинга для производства ароматических углеводородов оборудованы реактором селективного гидрирования непредельных углеводородов. Гидрирование проводят [c.185]

    Каждая задача в базе данных снабжена кодом,определяющим ее содержание. Например,»Закон Авогадро», «Металл + азотная кислота», «Гидрирование непредельных углеводородов». Подпрограмма «Анализ» позволяет определять число задач определенной темы в базе данных. Для задач повышенной трудности, проверяющих знания нескольких тем, иыбирается приоритетная. Подпрограмма «Формирование билетов» позволяет сделать набор из 25 или 50 билетов с неповторяющимися задачами в комплекте при условии отсутствия в одном билете задач на одну и ту же тему. Например,такая тема,как «Амфотерноть оксидов и гидроксидов» не может быть использована в билете одного набора как в простых задачах,так и в сложных. [c.29]

    Из данных табл. 1 следует, что гидрокрекинг децена-1 в широком интервале температур может протекать практически нацело. Но, поскольку в гидрогенизационных процессах скорости гидрирования непредельных углеводородов, по-видимому, значительно выше скоростей [c.13]

    Бензиновые фракции, получаемые при производстве этилена, пропилена, бутилена, бутадиена пиролизом углеводородных газов и низкооктановых бензинов, содержат 40—65 вес. % ароматических, около 20 вес. % олефиновых и 10—15 вес. % диолефиновых углеводородов. Применение их в качестве компонента автомобильного бензина или сырья для получения ароматических углеводородов без предварительной очистки невозможно из-за высокого содержания в них моно- и главным образом диолефинов, а также примесей сернистых, азотистых и кислородсодержащих соединений. Облагораживание таких бензинов методом селективной гидроочистки было проведено на сульфидном вольфрамникелевом, алюмокобальтмолибденовом, алюмоникелевом и алюмопалла-диевом катализаторах [32, 46—49]. Результаты облагораживания на двух последних (низкотемпературных) катализаторах показали, что оптимальное содержание палладия в катализаторе составляет 0,5, а никеля — около 10 вес. % [46—49]. В присутствии алюмопалладиевого катализатора глубина гидрирования непредельных углеводородов повышается с увеличением температуры, давления и с уменьшением удельной объемной скорости подачи сырья. Зависимость глубины гидрирования непредельных углеводородов от давления и удельной объемной скорости подачи сырья показана на рис. 44 [47]. [c.199]

    Обеспарафиненная (двукратным охлаждением до 0°) дизельная фракция имела уд. вес = 0,773 и средний молекулярный 216 (отвечающий нентадекану), содержание непредельных углеводородов оказалось равным 7%. После удаления гидрированием непредельных углеводородов тщательной фрак-ционировкой было установлено, что когазин II на 40% состоит из нормальных парафиновых углеводородов (из которых можно выделить в чистом состоянии индивидуальные углеводороды от октана до октадекана включительно) и на 60% из изопарафиновых углеводородов с мало разветвленными скелетами. Было показано, что из когазина II могут быть получены и дизельные топлива с низкими температурами замерзания. Последние получаются путем удаления из когазина II углеводородов с высокой температурой плавления охлаждением до—10°, —20°, —30° при этом выходы низкозастывающих фракций составляли соответственно 78, 62,5 и 45%. [c.200]

    В схемах установок, предусматривающих проведение конверсии углеводородов при 2,2—2,4 МПа, на стадии очистки от сернистых соединений целесообразно использовать алюмоникельмолибден-силикатный катализатор и поглотитель ГИАП-10. Тогда для обеих стадий условия очистки одинаковые температура 350—400 °С, объемная скорость 1000 4 давление 2,3—2,5 МПа. Такие условия благоприятны для гидрирования непредельных углеводородов, которые превращаются в соответствующие насыщенные углеводороды по реакции  [c.63]

    Проведены опыты по одновременной очистке нефтезаводского газа от сернистых соединений и гидрированию непредельных углеводородов на лабораторной установке с использованием алюмокобальтмолибденового и алюмоникельмолибдепового катализаторов и поглотительной массы ГИАП-10 [12]. Условия и результаты опытов следующие  [c.64]

    Каталитические процессы гидрирования органических сернистых соединений, гидрирования непредельных углеводородов, поглощения сернистых соединений, конмрсии окиси углерода и метанирования проводят в вертикальных стальных реакторах, загруженных слоем катализатора. Для ввода и вывода газа или парогазовой смеси реакторы имеют штуцеры, а также устройства, обеспечивающие равномерное распределение газа по слою катализатора, лазы, позволяющие-загружать и выгружать катализатор, и штуцеры для термопар Корпус реактора снаружи покрыт тепловой изоляцией. [c.153]

    Для производства водорода методом паровой каталитической конверсии в качестве сырья могут быть использованы нефтезаводские газы. Для этого необходима предварительная очистка сирья от содержащихся в нем непредельных углеводородов. В работе [ показано, что наиболее рациональный метод очистки нефтезаводских газов от непредельных углеводородов- гидрирование этих соединений в соответствующие насыщенные углеводороды. В работе [21приведены данные, показывающие, что при давлении 2,0 МПа, температуре 650-670 К и объемной скорости по сырью до 1500 ч на алюмокобальтмолибденовом и алюмоникельмолибденовом катализаторах гидрирование непредельных соединений, содержащихся в нефтезаводских газах в количестве до 20% протекает с глубиной превращения близкой к единице. Исследование влияния основных параметров на протекание процесса гидрирования непредельных углеводородов, содержащихся в нефтезаводских газах, является продолжением работы [2 о [c.11]


chem21.info

Глава 4. ДИЕНОВЫЕ УГЛЕВОДОРОДЫ

 

Диеновые углеводороды – ненасыщенные углеводороды состава СnН2n-2, молекулы которых в углеродном скелете содержат две двойные связи.

В зависимости от расположения двойных связей различают алкадиены с кумулированными двойными связями( алкадиены 1,2 или аллены), сопряженные и несопряженные диены.

Аллены – это алкадиены, у которых обе двойные связи находятся у одного атома углерода, например, Н2С=С=СН2 .

Несопряженные диены – это диены, в которых между двойными связями стоит больше одной одинарной связи, например, гексадиен-1,5 :

СН2=СН−СН2−СН2−СН=СН2 .

Наибольший интерес представляют сопряженные диены, в которых двойные связи разделены в цепи только одной σ-связью, например, СН2=СН−СН=СН2 СН2=С−СН=СН2

│‌

СН3

бутадиен-1,3 (дивинил) 2-метилбутадиен-1,3 (изопрен)

Сопряженные диены имеют большое практическое значение , так как являются исходным сырьем для получения синтетических полимерных материалов, поэтому далее мы рассмотрим только их.

В сопряженных диенах π-электронные облака двойных связей перекрываются между собой, образуя единое π-электронное облако, при этом π-электроны не принадлежат определенным связям, а делокализованы по всем атомам (π – π — сопряжение), как например в молекуле бутадиена:

 

 

4.1. Получение сопряжённых алкадиенов

1. Основной промышленный способ получения диенов –

Дегидрирование алканов.

Бутадиен получают из бутан-бутеновой фракции, выделяемой при крекинге нефти:

t,Сr2O3

СН3−СН2−СН2−СН3 СН2=СН−СН=СН2 + 2Н2

Аналогичным способом получают изопрен из изопентан-изопентеновой фракции крекинга нефти:

t,Cr2O3,Al2O3

СН3−СН(СН3) −СН2−СН3 СН2=С(СН3)−СН=СН2 + 2Н2

2. По методу Лебедева бутадиен-1,3 получают в результате одновременно протекающих процессов дегидратации и дегидрирования на смешанных катализаторах:

t, Al2O3 / ZnO

2Н5ОН СН2=СН−СН=СН2 + 2Н2О + Н2

3. Дегидратация диолов :

Н3РО4,NаРО3

СН2(ОН) −СН2−СН2−СН2(ОН) СН2=СН−СН=СН2 + 2Н2О

 

Al2O3

СН3−СН(ОН) −СН2−СН2(ОН) СН2=С−СН=СН2 + 2Н2О

│ │

СН3 СН3

Бутадиен-1,3легко сжижающийся газ с неприятным запахом. Изопрен- легкокипящая жидкость (t кип=34 0С).

 

4.2. Химические свойства алкадиенов

 

Все четыре атома углерода в бутадиене -1,3 находятся в sp2-гибридном состоянии. В результате бокового перекрывания р-орбиталей всех четырех атомов углерода образуется единое π-электронное облако. Это приводит к тому, что для диеновых углеводородов характерны реакции электрофильного присоединения, но из-за сопряжения двойные связи в их молекулах функционируют как единое целое, поэтому в результате присоединения одного моль реагента образуется два продукта: по концам сопряженной системы (1,4- присоединение, с перемещением двойной связи в центр) или к одной из двойных связей (1,2- присоединение). Cоотношение продуктов присоединения зависит от конкретных условий – температуры реакции, природы растворителя.

Галогенирование

CCI4

2СН2=СН−СН=СН2 + 2Вr2 ВrСН2−СН=СН−СН2Вr +

1,4-дибромбутен-2(80% при 40оС)

+ ВrСН2СНВrСН =СН2

3,4-дибромбутен-1 (20% при 400C)

 

CCI4

СН2 = СН−СН=СН2 + 2Вr2 ВrСН2−СНВr−СНВr−СН2Вr

1,2,3,4 – тетрабромбутан

 

2. Гидрогалогенирование — присоединение галогеноводородов ( по правилуМарковникова).

СН2=СН−СН=СН2 + НВr СН3−СН=СН−СН2Br(основной продукт)

4-бромбутен-2

СН3СНВrСН=СН2

3-бромбутен-1

 

СН2=СН−С=СН2 + НВr СН2=СH−СBr−СН3 +

| |

СН3 СН3

3-бром-3-метилбутен-1

 

СН3−С=СН−СН2Br

|

СН3

4-бром-2-метилбутен-2

 

СН2=СН−СН=СН2 + 2 НВr CН3−СНВr−СН2−СН2Вr

1,3-дибромбутан

3. Гидрирование.

 

Рt, t0

СН2=СН−СН=СН2 + Н2 СН3−СН=СН−СН3 + СН2=СН−СН2−СН3

бутен-2 бутен-1

Pt, t0

CH2=CН−СН=СН2 + 2 Н2 СН3−СН2−СН2−СН3

 

Полимеризация.

Диеновые углеводороды легко полимеризуются в присутствии многих катализаторов, в частности в кислой среде при нагревании: Полимеризация бутадиена-1,3 обычно происходит как 1,4-присоединение, но с примесью 1,2-полимера. СН2=СН−СН=СН2 [−СН2−СН=СН−СН2−]n

 

При полимеризации 2-метилбутадиена-1,3 получают синтетический каучук:

 

СН2=С−СН=СН2 [СН2−С=СН−СН2−]n

│ │

СН3 СН3

 

4.3.Примеры решения задач

Пример15. При полном каталитическом гидрировании некоторого диенового углеводорода массой 6,8г было получено 7,2г алкана. Определите формулу исходного алкадиена, напишите и назовите не менее четырёх его возможных изомеров.

Решение:

1) Напишем уравнение реакции гидрирования диенов:

СnН2n-2 + 2Н2 = СnН2n+2

2) Вычислим массу и количество водорода, вступившего в реакцию:

m(Н2) = 7,2 -6,8 = 0,4 (г) ; n (Н2) = m(Н2)/М(Н2) = 0,4/2 =0,2 (моль)

3) В соответствии с уравнением, в реакцию гидрирования вступает в 2 раза меньшее количество диена:

n(СnН2n-2) =n/(Н2)/ =0,2/2 = 0,1 (моль)

4) Определяем молярную массу и формулу диенового углеводорода:

М(СnН2n-2) = m (СnН2n-2)/n (СnН2n-2) =6,8/0,1 =68 (г/моль).

12n + 2n -2 = 68

14n=70, n=5, поэтому формула исходного вещества С5Н8

5) Напишем формулы и назовём его изомеры:

СН2 = СН−СН = СН − СН3 пентадиен – 1,3

СН2 = СН – СН2 − СН = СН2 пентадиен – 1,4

СН3 – СН = С = СН – СН3 пентадиен – 2,3

СН2 = С = С(СН3 ) – СН3 3 – метилбутадиен – 1,2

 

4.4.Задачи и упражнения для самостоятельного решения

104. Сколько диеновых углеводородов изомерно пентину-1? Напишите формулы этих веществ и назовите их по систематической номенклатуре.

105. Напишите структурные формулы изомеров состава С6Н10 и назовите их по систематической номенклатуре.

106. Приведите формулу метилгексадиена, существующего в форме четырех пространственных изомеров.

107. Углеводород Х, подвергающийся полимеризации, в реакции с избытком брома образует соединение состава С5Н8Вч4 , а при гидрировании превращается в разветвленный углеводород С5Н12. Назовите соединение Х и напишите уравнения реакций.

108. Реакции присоединения характерны для каждого из веществ, приведенных в ряду:

1) этин, 2- метилбутен-1, изобутан

2) этен, пропин, бутадиен-1,3

3) 2-бромбутан, пропилен, ацетальдегид

4) формальдегид, пропан, этилен.

Выберите правильный ответ.

109. С какими из перечисленных ниже веществ будет взаимодействовать изопрен: Н2, Nа, НВч, Вч2, NаОН, О2 ? Напишите уравнения соответствующих реакций.

110. Исходя из углерода и любых неорганических реагентов получите бутадиен-1,3.

111. Как можно выделить бутадиен-1,3 из его смеси с бутином-1 и этином?

112. Натуральный каучук представляет собой:

а) цис-полибутадиен, б)цис-полиизопрен, в) полиметилметакрилат, г)цис-полихлоропрен? Выберите правильный ответ .

113. Какое вещество может быть использовано как исходное для получения синтетического каучука:

а) СаС2 ; б)С2Н5ОН; в) С6Н5–СН=СН2; г) природный газ?

Выберите правильный ответ.

114. Хлоропреновый каучук получают из:

1) СНС1=СНС1 2) СН2=СС1−СН=СН2 3) СН2=СН−СН=СНС1 4)СН≡СС1. Выберите правильный ответ.

115. При полном гидрировании смеси трех изомеров, один из которых бутадиен-1,3, был получен только один алкан. Предложите структурные формулы соединений, которые могут быть получены при обработке НВr этой смеси изомеров, назовите все соединения.

116.Напишите уравнение реакции присоединения 1 моль брома к 1 моль бутадиена.

117. С какими из перечисленных ниже веществ будет взаимодействовать изопрен: Н2, K, KВr, Cl2, изопрен ? Напишите уравнения соответствующих реакций.

118. Относительная плотность некоторого алкадиена по гелию равна 13,5. Определите углеводород, напишите формулы его изомеров и назовите их.

119. После прохождения смеси бутадиена-1,3 и избытка водорода над нагретым платиновым катализатором ее плотность возросла на 20%. Определите объемную долю бутадиена-1,3 в исходной смеси.

120. Замкнутый сосуд наполнили находящимся в газообразном состоянии алкадиеном. При полном термическом разложении углеводорода на элементы давление в сосуде увеличилось в 4 раза (при неизменной температуре). Укажите все углеводороды, которые могли бы дать подобный результат.

121. Определите объем водорода, который потребуется для полного каталитического гидрирования 45,56 л (н.у.) смеси пропена и бутадиена-1,3, если плотность смеси равна 2,143 г/л (н.у.).

122. Смесь этилена и диенового углеводорода разветвленного строения объемом 4,48 л (н.у.) обесцвечивает 148 мл раствора брома в тетрахлориде углерода с массовой долей брома 15% и плотностью 1,8г/мл. Определите структурную формулу диенового углеводорода, если известно, что при сжигании такого же количества исходной смеси образуется 9 г воды.

123. При полном каталитическом гидрировании некоторого диенового углеводорода массой 24,6 г получено 25,8 г предельного соединения. Определите формулу исходного алкадиена, напишите структурные формулы и назовите не менее пяти его возможных изомеров.

124. На сжигание одного объема паров некоторого диенового углеводорода требуется объем воздуха, в 33,3 раза больший объема паров сожженного углеводорода (объемы газов измерены при одинаковых условиях). Напишите структурные формулы его возможных изомеров и назовите их по систематической номенклатуре.

125. Для полного каталитического гидрирования 3,45 г смеси бутадиена и пропена требуется водород объемом 2,41 л (11оС; 98 кПа). Определите объемные доли газов в исходной смеси.

126. Раствор алкадиена в н- гексане, в котором массовая доля алкадиена составляла ровно 20%, подвергли гидрированию в присутствии никелевого катализатора. После завершения гидрирования массовая доля образовавшегося алкана составила 20,7730%. Определите формулу исходного алкадиена и напишите структурные формулы его изомеров.

 

Глава 5. АЛКИНЫ

 

Алкины- ненасыщенные углеводороды с одной тройной связью, относящиеся к гомологическому ряду соединений с общей формулой

CnH2n-2 . Название алкинов образуется из названий соответствующих алканов заменой суффикса -ан на суффикс -ин. Для алкинов возможна структурная изомерия, обусловленная изомерией углеродного скелета, изомерия положения тройной связи и межклассовая изомерия (алкины и алкадиены).

По физическим свойствам алкины напоминают алканы и алкены. Низшие алкины С2 –С4 представляют собой бесцветные газы, С516— жидкости, высшие алкины– твердые вещества.

Температуры кипения алкинов несколько выше, чем у соответствующих алкенов. Подобно алканам и алкенам, алкины нерастворимы в воде, но растворимы в полярных растворителях.

 

5.1. Получение алкинов

 

1. Реакция пиролиза (промышленный способ получения ацетилена путем высокотемпературного крекинга метана):

1500о С

2СН4 НС≡СН + 3Н2

 

1200оС

2 С2Н6 С2Н2 + 2Н2

 



Читайте также:

lektsia.info

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *