Сформируйте основные положения современной клеточной теории
Клеточная теория включает следующие основные положения: Клетка — элементарная единица живого, способная к самообновлению, саморегуляции и самовоспроизведению й являющаяся единицей строения, функционирования и развития всех живых организмов. Клетки всех живых организмов сходны по строению, химическому составу и основным проявлениям жизнедеятельности. Размножение клеток происходит путем деления исходной материнской клетки. В многоклеточном организме клетки специализируются по функциям и образуют ткани, из которых построены органы и их системы, связанные между собой межклеточными, гуморальными и нервными формами регуляции.
Современная клеточная теория включает следующие основные положения: №1 Клетка — единица строения, жизнедеятельности, роста и развития живых организмов, вне клетки жизни нет; . №2 Клетка — единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование; №3 Клетки всех организмов сходны по своему химическому составу, строению и функциям; №4 Новые клетки образуются только в результате деления исходных клеток; №5 Клетки многоклеточных организмов образуют ткани, из тканей органы. Жизнь организма в целом обусловлена взаимодействием составляющих его клеток; №6 Клетки многоклеточных организмов имеют полный набор генов, но отличаются друг от друга тем, что у них работают различные группы генов, следствием чего является морфологическое и функциональное разнообразие клеток — дифференцировка.
дпльфудж\епошфг\ешоджирфгщжщшо разгадаете шифр получите ответ тупизна
Клеточная теория — биологическая теория, утверждающая общность происхождения и единство принципов строения и развития организмов. Согласно клеточной теории основным структурным элементом организма является клетка. Клеточная теория впервые была сформулирована Т. Шванном.
В настоящее время основные положения клеточной теории можно сформулировать в четырех тезисах. 1.Все живые организмы, исключая вирусы, состоят из клеток и продуктов их жизнедеятельности. Этот тезис отражает единство клеточного происхождения всех организмов и подчеркивает значение неклеточных компонентов, например плазмы крови, спинномозговой жидкости, внеклеточного матрикса соединительных тканей. 2.Клетки всех живых организмов имеют принципиальное сходство своего строения и основного обмена веществ, т. е. все клетки гомологичны (от греч. гомос — равный, одинаковый и логос — понятие). Данный тезис также отражает единство происхождения всех живых организмов от клеточного предка — протоклетки (см. §10). Любая клетка состоит из трех универсальных субсистем: поверхностного аппарата, цитоплазмы и ядерного аппарата. Энергетический обмен всех клеток базируется на бескислородном расщеплении углеводов — гликолизе. Жизнедеятельность всех клеток основана на трех универсальных процессах: синтезе ДНК, синтезе РНК и синтезе белка. 3.Каждая клетка образуется только путем деления уже существующей клетки. Это положение постулирует невозможность самозарождения клеток в условиях, сложившихся после их возникновения и эволюции. Так как протобионты и многие протоклетки были гетеротрофами, они использовали органические вещества в своём обмене веществ. Этим самым они свели возможность повторного возникновения протобионтов к нулю. После возникновения фотосинтеза возник озоновый экран в атмосфере, что резко снизило поступление на Землю высокоэнергетических коротковолновых ультрафиолетовых лучей. 4.Активность многоклеточного организма слагается из активности его клеток и результатов их взаимодействия. Этот тезис подчеркивает, что многоклеточный организм — это не сумма клеток, а совокупность взаимодействующих клеток, т. е. система (от греч. система — целое, составленное из частей; соединение). В ней активность каждой клетки зависит от функционирования не только соседних, но и отдаленных от неё клеток. В частности, эритроциты снабжают кислородом все клетки организма, секреторные клетки, выделяют гормоны, нейроны образуют цепи и сети.
touch.otvet.mail.ru
Химический состав клеток
Установлено, что клетки всех живых организмов сходны по химическому составу – особенно велико содержание в клетках водорода, кислорода, углерода и азота (эти элементы составляют более 98% от всего содержимого клетки). Остальные 2% составляют примерно 50 химических элементов.
Клетки живых организмов содержат неорганические вещества – воду (в среднем до 80 %) и минеральные соли а также – органические соединения : 90% сухой массы клетки приходится на биополимеры – белки, нуклеиновые кислоты, углеводы, липиды.
Белки регулируют обмен веществ клетки, нуклеиновые кислоты – хранители наследственной информации. Липиды (жиры и жироподобные вещества) выполняют энергетическую роль, участвуют в процессах обмена веществ и размножения клеток. Углеводы служат источником энергии, строительным материалом (клеточная стенка у растений состоит в основном из полисахарида целлюлозы) и выполняют запасающую функцию, накапливаясь в качестве резервного продукта.
Белки– это биополимеры, мономерами которых являютсяаминокислоты. Все белки живых организмов построены из 20 аминокислот. Несмотря на это разнообразие белковых молекул огромно. Аминокислоты содержат в себе как кислотную группуСООН, так и щелочную группуNH2. Благодаря этому аминокислоты легко соединяются между собой. Молекулы разных белков сильно различаются по массе, содержанию разных аминокислот и порядку их расположения. Поэтому молекулярная масса белков колеблется от десятков тысяч до десятков миллионов. Изменение последовательности даже одной пары аминокислот влечет изменение свойств исходного белка и превращение его в новый. Установлено, что белки сами по себе, без контролирующего воздействия нуклеиновых кислот, размножаться не могут.
Нуклеиновые кислоты имеют первостепенное биологическое значение и представляют собой сложные биополимеры, мономерами которых являютсянуклеотиды, резко отличающиеся от аминокислот. Нуклеотиды включают три компонента: азотистое основание, углевод и остаток фосфорной кислоты. Разнообразие их сочетаний определяет индивидуальную природу нуклеиновых кислот. Существует два типа нуклеиновых кислот:дезоксирибонуклеиновая кислота( ДНК ) ирибонуклеиновая кислота ( РНК ).
ДНК расположена главным образом в ядре клетки, а РНК – преимущественно в цитоплазме. ДНК является хранителем наследственной информации. Наследственная информация в ДНК определяется порядком взаимного расположения в них азотистых оснований, который воспроизводится в дочерних молекулах. РНК в качестве посредников помогают передаче генетической информации в процессе биосинтеза белка. Если при этом будет поврежден какой-либо нуклеотид в молекуле ДНК, то не будет образован тот белок-фермент, за синтез которого отвечает ДНК, а это повлечет нарушение нормального обмена веществ клетки и сделает ее неполноценной.
-
Клеточные и неклеточные формы жизни
На определенной ступени эволюции органического мира возникли клеточные структуры. В этом проявляется одна из основных закономерностей, характеризующих живое, – единство дискретного и целостного. Именно благодаря клеточному строению организм, являясь дискретным, сохраняет целостность. Расчленение целого организма на мелкие морфологические единицы – клетки, обладающие большими поверхностями, весьма благоприятно для осуществления обмена веществ. Клеточная структура, не нарушая жизнедеятельности целого организма, способствует постепенной замене отмирающих или патологически измененных частей тела новыми. Сохранение клеточной структуры во всем органическом мире обусловлено тем, что только она обеспечивает наилучшее хранение, репродукцию и передачу наследственной информации; только такая структура обеспечивает реализацию наследственной информации для синтеза белка. Только с клеточной структурой связана способность организмов хранить и переносить энергию и превращать ее в работу. Наконец, разделение функций между клетками в многоклеточном организме обеспечило широкие возможности приспособления организмов к среде обитания.
Во всем многообразии органического мира можно выделить две резко отличные группы – неклеточныеиклеточные формы жизни.
К неклеточным формам относятся вирусы,проявляющие жизнедеятельность только в стадии внутриклеточного паразитизма. Вирусы были обнаружены в 1892 г. русским ученым Д.И. Ивановским (1864–1920). Вирусы представляют собой простейшую форму жизни на Земле, занимающую пограничное положение между живой и неживой природой. Они могут проявлять свойства живых организмов, только попав в их клетки. Способность к размножению и связанные с ней наследственность и изменчивость вирусы проявляют лишь в живой клетке хозяина. Особенности вирусов заключаются в их незначительных размерах (20–2000 нм), отсутствие клеточного строения, обмена веществ и энергии. Но самым характерным критерием является наличие у вирусов только одной нуклеиновой кислоты – РНК или ДНК (у всех остальных живых организмов всегда имеются и ДНК, и РНК), Вирусы не способны сами синтезировать белки; способ размножения вирусов значительно отличается от размножения других организмов. Вирусы не растут. В настоящее время описано около 3000 вирусов, поражающих клетки бактерий, растений, животных и человека. Они являются возбудителями ряда опасных заболеваний.
Основную массу живых существ составляют организмы, обладающие клеточной структурой, которые в свою очередь делятся на две категории: не имеющие оформленного ядра – прокариоты, и обладающие оформленным ядром –эукариоты. К прокариотам относятся бактерии и сине-зеленые водоросли, к эукариотам – все остальные животные и растительные организмы. Прокариоты имеют по одной хромосоме, представленной молекулой ДНК. Клетки эукариот имеют ядра, содержащие хромосомы в виде соединения ДНК и белков. Таково большинство современных растений и животных. С наличием ядра совершеннее стал процесс деления клеток. В многоклеточных организмах клетки стали подразделяться на специализированные и неспециализированные. Дифференцированные клетки хорошо приспособлены к какой-либо одной функции. Поэтому жизненный процесс может быть обеспечен лишь взаимодействием разных клеток.
studfiles.net
Тема 2.1. История изучения клетки. Клеточная теория.
1. Дайте определения понятий.
Клетка – элементарная единица строения и жизнедеятельности всех организмов, обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию.
Органоид – постоянная специализированная структура в клетках живых организмов, осуществляющая определенные функции.
Цитология – раздел биологии, изучающий живые клетки, их органоиды, их строение, функционирование, процессы клеточного размножения, старения и смерти.
2. Распределите фамилии ученых из приведенного перечня (список избыточен) по соответствующим столбцам таблицы.
Р. Броун, К. Бэр, Р. Вирхов, К. Гален, К. Гольджи, Р. Гук, Ч. Дарвин, А. Левенгук, К. Линней, Г. Мендель, Т. Шванн, М. Шлейден.
Ученые, внесшие вклад в развитие знаний о клетке
3. Заполните левый столбец таблицы.
ИСТОРИЯ ИЗУЧЕНИЯ КЛЕТКИ

4. Укажите признаки, общие для всех клеток. Объясните, благодаря каким свойствам живой материи все клетки имеют общие признаки.
Все клетки окружены мембраной, их генетическая информация хранится в генах, белки являются их основным структурным материалом и биокатализаторами, они синтезируются на рибосомах, в качестве источника энергии клетки используют АТФ. Все клетки – открытые системы. Для них характерны рост и развитие, размножение и раздражимость.
5. Какое значение для биологической науки имеет клеточная теория?
Клеточная теория позволила сделать вывод о сходстве химического состава всех клеток, общем плане их строения, что подтверждает филогенетическое единство всего живого мира. Современная цитология, вобрав в себя достижения генетики, молекулярной биологии, биохимии, превратилась в клеточную биологию.
6. Докажите, что существование в природе вирусов не противоречит утверждениям клеточной теории.
Существование в природе вирусов не противоречит утверждениям клеточной теории, потому что размножаться вирусы могут только внутри живых клеток. Являясь паразитами на генетическом уровне, вирусы не способны к самовоспроизведению и метаболизму вне живой клетки.
7. Впишите пропущенные термины.
Форму двояковогнутого диска имеют эритроциты человека.
В состав костной ткани входят крупные остеоциты с многочисленными отростками. Лейкоциты крови не имеют постоянной формы. Очень разнообразны клетки нервной ткани, обладающие способностью к возбудимости и проводимости.
8. Познавательная задача.
Первое описание клетки было опубликовано в 1665 г. В 1675 г. стали известны одноклеточные организмы. Клеточная теория была сформулирована в 1839 г. Почему дата зарождения цитологии совпадает со временем формулирования клеточной теории, а не со временем открытия клетки?
Цитология – раздел биологии, изучающий органоиды, их строение, функционирование, процессы клеточного размножения, старения и смерти в клетке. На момент открытия клетки была описана клеточная стенка. Далее были открыты первые клетки, но сама структура и функции их известны не были. Знаний было недостаточно, они были проанализированы Т. Т. Шванном, М. Шлейденом, и ими была создана клеточная теория.
9. Выберите правильный ответ.
Тест 1.
Клеточное строение имеет:
1) айсберг;
2) лепесток тюльпана;
3) белок гемоглобин;
4) кусок мыла.
Тест 2.
Авторами клеточной теории являются:
1) Р. Гук и А. Левенгук;
2) М. Шлейден и Т. Шванн;
3) Л. Пастер и И. И. Мечников;
4) Ч. Дарвин и А. Уоллес.
Тест 3.
Какое положение клеточной теории принадлежит Р. Вирхову?
1) Клетка — элементарная единица живого;
2) всякая клетка происходит из другой клетки;
3) все клетки сходны по своему химическому составу;
4) сходное клеточное строение организмов — свидетельство общности происхождения всего живого.
10. Объясните происхождение и общее значение слова (термина), опираясь на значение корней, его составляющих.
11. Выберите термин и объясните, насколько его современное значение соответствует первоначальному значению его корней.
Цитология – первоначально обозначала изучение структуры и функций клетки. Позднее цитология превратилась в обширный раздел биологии, стала более практичной и прикладной, но суть термина осталась прежней – изучение клетки и ее функций.
12. Сформулируйте и запишите основные идеи § 2.1.
О существовании клеток люди узнали после изобретения микроскопа. Первый примитивный микроскоп изобрел З. Янсен.
Р. Гук обнаружил клетки пробки.
А. Ван Левенгук, усовершенствовав микроскоп, наблюдал живые клетки и описал бактерии.
К. Бэр обнаружил яйцеклетку млекопитающих.
Ядро было обнаружено в растительных клетках Р. Брауном.
М. Шлейден и Т. Шванн первыми сформулировали клеточную теорию. «Все организмы состоят из простейших частиц – клеток, а каждая клетка – самостоятельное целое. В организме клетки действуют совместно, формируя гармоничное единство».
Р. Вирхов обосновал, что все клетки образуются из других клеток путем клеточного деления.
К концу XIX в. были открыты и изучены структурные компоненты клеток и процесс их деления. Возникновение цитологии.
Основные положения современной клеточной теории:
• клетка — структурно-функциональная единица всех живых организмов, а также единица развития;
• клеткам присуще мембранное строение;
• ядро — главная часть эукариотической клетки;
• клетки размножаются только делением;
• клеточное строение организмов свидетельствует о том, что растения и животные имеют единое происхождение.
biogdz.ru
Состав клетки
Цитология наука о клетке. Наука о клетке называется цитологией (греч. «цитос» — клетка, «логос» — наука). Предмет цитологии — клетки многоклеточных животных и растений, а также одноклеточных организмов, к числу которых относятся бактерии, простейшие и одноклеточные водоросли. Цитология изучает строение и химический состав клеток, функции внутриклеточных структур, функции клеток в организме животных и растений, размножение и развитие клеток, приспособления клеток к условиям окружающей среды. Современная цитология - наука комплексная. Она имеет самые тесные связи с другими биологическими науками, например с ботаникой, зоологией, физиологией, учением об эволюции органического мира, а также с молекулярной биологией, химией, физикой, математикой. Цитология — одна из относительно молодых биологических наук, ее возраст около 100 лет. Возраст же термина «клетка» насчитывает свыше 300 лет. Впервые название «клетка» в середине XVII в. применил Р. Гук. Рассматривая тонкий срез пробки с помощью микроскопа, Гук увидел, что пробка состоит из ячеек — клеток.
Клеточная теория. В середине XIX столетия на основе уже многочисленных знаний о клетке Т. Шванн сформулировал клеточную теорию (1838). Он обобщил имевшиеся знания о клетке и показал, что клетка представляет основную единицу строения всех живых организмов, что клетки животных и растений сходны по своему строению. Эти положения явились важнейшими доказательствами единства происхождения всех живых организмов, единство всего органического мира. Т. Шван внес в науку правильное понимание клетки как самостоятельной единицы жизни, наименьшей единицы живого: вне клетки нет жизни.
Изучение химической организации клетки привело к выводу, что именно химические процессы лежат в основе ее жизни, что клетки всех организмов сходны по химическому составу, у них однотипно протекают основные процессы обмена веществ. Данные о сходстве химического состава клеток еще раз подтвердили единство всего органического мира.
Современная клеточная — теория включает следующие положения: клетка основная единица строения и развития всех живых организмов, наименьшая единица живого; клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ; размножение клеток происходит путем их деления, и каждая новая клетка образуется в результате деления исходной (материнской) клетки; в сложных многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани; из тканей состоят органы, которые тесно связаны между собой и подчинены нервным и гуморальным системам регуляции.
Исследования клетки имеют большое значение для разгадки заболеваний. Именно в клетках начинают развиваться патологические изменения, приводящие к возникновению заболеваний. Чтобы понять роль клеток в развитии заболеваний, приведем несколько примеров. Одно из серьезных заболеваний человека — сахарный диабет. Причина этого заболевания — недостаточная деятельность группы клеток поджелудочной железы, вырабатывающих гормон инсулин, который участвует в регуляции сахарного обмена организма. Злокачественные изменения, приводящие к развитию раковых опухолей, возникают также на уровне клеток. Возбудители кокцидиоза — опасного заболевания кроликов, кур, гусей и уток — паразитические простейшие — кокцидии проникают в клетки кишечного эпителия и печени, растут и размножаются в них, полностью нарушают обмен веществ, а затем разрушают эти клетки. У больных кокцидиозом животных сильно нарушается деятельность пищеварительной системы, и при отсутствии лечения животные погибают. Вот почему изучение строения, химического состава, обмена веществ и всех проявлений жизнедеятельности клеток необходимо не только в биологии, но также в медицине и ветеринарии.
Изучение клеток разнообразных одноклеточных и многоклеточных организмов с помощью светооптического и электронного микроскопов показало, что по своему строению они разделяются на две группы. Одну группу составляют бактерии и сине-зеленые водоросли. Эти организмы имеют наиболее простое строение клеток. Их называют доеденными (прокариотами), так как у них нет оформленного ядра и нет многих структур, которые называют органоидами. Другую группу составляют все остальные организмы: от одноклеточных зеленых водорослей и простейших до высших цветковых растений, млекопитающих, в том числе и человека. Они имеют сложно устроенные клетки, которые называют ядерными (эукариотическими). Эти клетки имеют ядро и органоиды, выполняющие специфические функции.
Строение и функции оболочки клетки
Клетка любого организма, представляет собой целостную живую систему. Она состоит из трех неразрывно связанных между собой частей: оболочки, цитоплазмы и ядра. Оболочка клетка осуществляет непосредственное взаимодействие с внешней средой и взаимодействие с соседними клетками (в многоклеточных организмах).
Оболочка клеток. Оболочка клеток имеет сложное строение. Она состоит из наружного слоя и расположенной под ним плазматической мембраны. Клетки животных и растений различаются по строению их наружного слоя. У растений, а также у бактерий, сине-зеленых водорослей и грибов на поверхности клеток расположена плотная оболочка, или клеточная стенка. У большинства растений она состоит из клетчатки. Клеточная стенка играет исключительно важную роль: она представляет собой внешний каркас, защитную оболочку, обеспечивает тургор растительных клеток: через клеточную стенку проходит вода, соли, молекулы многих органических веществ.
Наружный слой поверхности клеток животных в отличие от клеточных стенок растений очень тонкий, эластичный. Он не виден в световой микроскоп и состоит из разнообразных полисахаридов и белков. Поверхностный слой животных клеток получил название гликокаликс.
Гликокаликс выполняет прежде всего функцию непосредственной связи клеток животных с внешней средой, со всеми окружающими ее веществами. Имея незначительную толщину (меньше 1 мкм), наружный слой клетки животных не выполняет опорной роли, какая свойственна клеточным стенкам растений. Образование гликокаликса, так же как и клеточных стенок растений, происходит благодаря жизнедеятельности самих клеток.
Плазматическая мембрана. Под гликокаликсом и клеточной стенкой растений расположена плазматическая мембрана (лат. «мембрана» — кожица, пленка), граничащая непосредственно с цитоплазмой. Толщина плазматической мембраны около 10 нм, изучение ее строения и функций возможно только с помощью электронного микроскопа.
В состав плазматической мембраны входят белки и липиды. Они упорядочено расположены и соединены друг с другом химическими взаимодействиями. По современным представлениям молекулы липидов в плазматической мембране расположены в два ряда и образуют сплошной слой. Молекулы белков не образуют сплошного слоя, они располагаются в слое липидов, погружаясь в него на разную глубину.
Молекулы белка и липидов подвижны, что обеспечивает динамичность плазматической мембраны.
Плазматическая мембрана выполняет много важных функций, от которых завидят жизнедеятельность клеток. Одна из таких функций заключается в том, что она образует барьер, отграничивающий внутреннее содержимое клетки от внешней среды. Но между клетками и внешней средой постоянно происходит обмен веществ. Из внешней среды в клетку поступает вода, разнообразные соли в форме отдельных ионов, неорганические и органические молекулы. Они проникают в клетку через очень тонкие каналы плазматической мембраны. Во внешнюю среду выводятся продукты, образованные в клетке. Транспорт веществ- одна из главных функций плазматической мембраны. Через плазматическую мембрану из клети выводятся продукты обмена, а также вещества, синтезированные в клетке. К числу их относятся разнообразные белки, углеводы, гормоны, которые вырабатываются в клетках различных желез и выводятся во внеклеточную среду в форме мелких капель.
Клетки, образующие у многоклеточных животных разнообразные ткани (эпителиальную, мышечную и др.), соединяются друг с другом плазматической мембраной. В местах соединения двух клеток мембрана каждой из них может образовывать складки или выросты, которые придают соединениям особую прочность.
Соединение клеток растений обеспечивается путем образования тонких каналов, которые заполнены цитоплазмой и ограничены плазматической мембраной. По таким каналам, проходящим через клеточные оболочки, из одной клетки в другую поступают питательные вещества, ионы, углеводы и другие соединения.
На поверхности многих клеток животных, например, различных эпителиев, находятся очень мелкие тонкие выросты цитоплазмы, покрытые плазматической мембраной, микроворсинки. Наибольшее количество микроворсинок находится на поверхности клеток кишечника, где происходит интенсивное переваривание и всасывание переваренной пищи.
Фагоцитоз. Крупные молекулы органических веществ, например белков и полисахаридов, частицы пищи, бактерии поступают в клетку путем фагоцита (греч. «фагео» пожирать). В фагоците непосредственное участие принимает плазматическая мембрана. В том месте, где поверхность клетки соприкасается с частицей какого-либо плотного вещества, мембрана прогибается, образует углубление и окружает частицу, которая в «мембранной упаковке» погружается внутрь клетки. Образуется пищеварительная вакуоль и в ней перевариваются поступившие в клетку органические вещества.
Цитоплазма. Отграниченная от внешней среды плазматической мембраной, цитоплазма представляет собой внутреннюю полужидкую среду клеток. В цитоплазму эукариотических клеток располагаются ядро и различные органоиды. Ядро располагается в центральной части цитоплазмы. В ней сосредоточены и разнообразные включения — продукты клеточной деятельности, вакуоли, а также мельчайшие трубочки и нити, образующие скелет клетки. В составе основного вещества цитоплазмы преобладают белки. В цитоплазме протекают основные процессы обмена веществ, она объединяет в одно целое ядро и все органоиды, обеспечивает их взаимодействие, деятельность клетки как единой целостной живой системы.
Эндоплазматическая сеть. Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети.
Эндоплазматическая сеть неоднородна по своему строению. Известны два ее типа — гранулярная и гладкая. На мембранах каналов и полостей гранулярной сети располагается множество мелких округлых телец — рибосом, которые придают мембранам шероховатый вид. Мембраны гладкой эндоплазматической сети не несут рибосом на своей поверхности.
Эндоплазматическая сеть выполняет много разнообразных функций. Основная функция гранулярной эндоплазматической сети — участие в синтезе белка, который осуществляется в рибосомах.
На мембранах гладкой эндоплазматической сети происходит синтез липидов и углеводов. Все эти продукты синтеза накапливаются на каналах и полостях, а затем транспортируются к различным органоидам клетки, где потребляются или накапливаются в цитоплазме в качестве клеточных включений. Эндоплазматическая сеть связывает между собой основные органоиды клетки.
Рибосомы. Рибосомы обнаружены в клетках всех организмов. Это микроскопические тельца округлой формы диаметром 15-20 нм. Каждая рибосома состоит из двух неодинаковых по размерам частиц, малой и большой.
В одной клетке содержится много тысяч рибосом, они располагаются либо на мембранах гранулярной эндоплазматической сети, либо свободно лежат в цитоплазме. В состав рибосом входят белки и РНК. Функция рибосом — это синтез белка. Синтез белка сложный процесс, который осуществляется не одной рибосомой, а целой группой, включающей до нескольких десятков объединенных рибосом. Такую группу рибосом называют полисомой. Синтезированные белки сначала накапливаются в каналах и полостях эндоплазматической сети, а затем транспортируются к органоидам и участкам клетки, где они потребляютя. Эндоплазматическая сеть и рибосомы, расположенные на ее мембранах, представляют собой единый аппарат биосинтеза и транспортировки белков.
Митохондрии. В цитоплазме большинства клеток животных и растений содержатся мелкие тельца (0,2-7 мкм) — митохондрии (греч. «митос» — нить, «хондрион» — зерно, гранула).
Митохондрии хорошо видны в световой микроскоп, с помощью которого можно рассмотреть их форму, расположение, сосчитать количество. Внутреннее строение митохондрий изучено с помощью электронного микроскопа. Оболочка митохондрии состоит из двух мембран — наружной и внутренней. Наружная мембрана гладкая, она не образует никаких складок и выростов. Внутренняя мембрана, напротив, образует многочисленные складки, которые направлены в полость митохондрии. Складки внутренней мембраны называют кристами (лат. <криста> — гребень, вырост) Число крист неодинаково в митохондриях разных клеток. Их может быть от нескольких десятков до нескольких сотен, причем особенно много крист в митохондриях активно функционирующих клеток, например мышечных.
Митохондрии называют <силовыми станциями> клеток> так как их основная функция синтез аденозинтрифосфорной кислоты (АТФ). Эта кислота синтезируется в митохондриях клеток всех организмов и представляет собой универсальный источник энергии, необходимый для осуществления процессов жизнедеятельности клетки и целого организма.
Новые митохондрии образуются делением уже существующих в клетке митохондрий.
Пластиды. В цитоплазме клеток всех растений находятся пластиды. В клетках животных пластиды отсутствуют. Различают три основных типа пластид: зеленые - хлоропласты; красные, оранжевые и желтые — хромопласты; бесцветные - лейкопласты.
Хлоропласт. Эти органоиды содержатся в клетках листьев и других зеленых органов растений, а также у разнообразных водорослей. Размеры хлоропластов 4-6 мкм, наиболее часто они имеют овальную форму. У высших растений в одной клетке обычно бывает несколько десятков хлоропластов. Зеленый цвет хлоропластов зависит от содержания в них пигмента хлорофилла. Xлоропласт — основной органоид клеток растений, в котором происходит фотосинтез, т.е. образование органических веществ (углеводов) из неорганических (СО2 и Н2О) при использовании энергии солнечного света.
По строению хлоропласты сходны с митохондриями. От цитоплазмы хлоропласт отграничен двумя мембранами — наружной и внутренней. Наружная мембрана гладкая, без складок и выростов, а внутренняя образует много складчатых выростов, направленных внутрь хлоропласта. Поэтому внутри хлоропласта сосредоточено большое количество мембран, образующих особые структуры — граны. Они сложены наподобие стопки монет.
В мембранах гран располагаются молекулы хлорофилла, потому именно здесь происходит фотосинтез. В хлоропластах синтезируется и АТФ. Между внутренними мембранами хлоропласта содержатся ДНК, РНК и рибосомы. Следовательно, в хлоропластах, так же как и в митохондриях, происходит синтез белка, необходимого для деятельности этих органоидов. Хлоропласты размножаются делением.
Хромопласты находятся в цитоплазме клеток разных частей растений: в цветках, плодах, стеблях, листьях. Присутствием хромопластов объясняется желтая, оранжевая и красная окраска венчиков цветков, плодов, осенних листьев.
Лейкопласты. находятся в цитоплазме клеток неокрашенных частей растений, например в стеблях, корнях, клубнях. Форма лейкопластов разнообразна.
Хлоропласты, хромопласты и лейкопласты способны клетка взаимному переходу. Так при созревании плодов или изменении окраски листьев осенью хлоропласты превращаются в хромопласты, а лейкопласты могут превращаться в хлоропласты, например, при позеленении клубней картофеля.
Аппарат Гольджи. Во многих клетках животных, например, в нервных, он имеет форму сложной сети, расположенной вокруг ядра. В клетках растений и простейших аппарат Гольджи представлен отдельными тельцами серповидной или палочковидной формы. Строение этого органоида сходно в клетках растительных и животных организмов, несмотря на разнообразие его формы.
В состав аппарата Гольджи входят: полости, ограниченные мембранами и расположенные группами (по 5-10) ; крупные и мелкие пузырьки, расположенные на концах полостей. Все эти элементы составляют единый комплекс.
Аппарат Гольджи выполняет много важных функций. По каналам эндоплазматической сети к нему транспортируются продукты синтетической деятельности клетки — белки, углеводы и жиры. Все эти вещества сначала накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме. Например, в клетках поджелудочной железы млекопитающих синтезируются пищеварительные ферменты, которые накапливаются в полостях органоида. Затем образуются пузырьки, наполненные ферментами. Они выводятся из клеток в проток поджелудочной железы, откуда перетекают в полость кишечника. Еще одна важная функция этого органоида заключается в том, что на его мембранах происходит синтез жиров и углеводов (полисахаридов), которые используются в клетке и которые входят в состав мембран. Благодаря деятельности аппарата Гольджи происходят обновление и рост плазматической мембраны.
Лизосомы. Представляют собой небольшие округлые тельца. От Цитоплазмы каждая лизосома отграничена мембраной. Внутри лизосомы находятся ферменты, расщепляющие белки, жиры, углеводы, нуклеиновые кислоты.
К пищевой частице, поступившей в цитоплазму, подходят лизосомы, сливаются с ней, и образуется одна пищеварительная вакуоль, внутри которой находится пищевая частица, окруженная ферментами лизосом. Вещества, образовавшиеся в результате переваривания пищевой частицы, поступают в цитоплазму и используются клеткой.
Обладая способностью к активному перевариванию пищевых веществ, лизосомы участвуют в удалении отмирающих в процессе жизнедеятельности частей клеток, целых клеток и органов. Образование новых лизосом происходит в клетке постоянно. Ферменты, содержащиеся в лизосомах, как и всякие другие белки синтезируются на рибосомах цитоплазмы. Затем эти ферменты поступают по каналам эндоплазматической сети к аппарату Гольджи, в полостях которого формируются лизосомы. В таком виде лизосомы поступают в цитоплазму.
Клеточный центр. В клетках животных вблизи ядра находится органоид, который называют клеточным центром. Основную часть клеточного центра составляют два маленьких тельца — центриоли, расположенные в небольшом участке уплотненной цитоплазмы. Каждая центриоль имеет форму цилиндра длиной до 1 мкм. Центриоли играют важную роль при делении клетки; они участвуют в образовании веретена деления.
Клеточные включения. К клеточным включениям относятся углеводы, жиры и белки. Все эти вещества накапливаются в цитоплазме клетки в виде капель и зерен различной величины и формы. Они периодически синтезируются в клетке и используются в процессе обмена веществ.
Ядро. Каждая клетка одноклеточных и многоклеточных животных, а также растений содержит ядро. Форма и размеры ядра зависят от формы и размера клеток. В большинстве клеток имеется одно ядро, и такие клетки называют одноядерными. Существуют также клетки с двумя, тремя, с несколькими десятками и даже сотнями ядер. Это многоядерные клетки.
Ядерный сок — полужидкое вещество, которое находится под ядерной оболочкой и представляет внутреннюю среду ядра.
Химический состав клетки. Неорганические вещества Атомный и молекулярный состав клетки. В микроскопической клетке содержится несколько тысяч веществ, которые участвуют в разнообразных химических реакциях. Химические процессы, протекающие в клетке, — одно из основных условий ее жизни, развития и функционирования.
Все клетки животных и растительных организмов, а также микроорганизмов сходны по химическому составу, что свидетельствует о единстве органического мира.
Содержание химических элементов в клетке
| Элементы | Количество (в %) |
| Кислород | 65-75 |
| Кальций | 0,04-2,00 |
| Углерод | 15-16 |
| Магний | 0,02-0,03 |
| Водород | 8-10 |
| Натрий | 0,02-0,03 |
| Азот | 1,5-3,0 |
| Железо | 0,01-0,015 |
| Фосфор | 0,2-1,0 |
| Цинк | 0,0003 |
| Калий | 0,15-0,4 |
| Медь | 0,0002 |
| Сера | 0,15-0,2 |
| Йод | 0,0001 |
| Хлор | 0,05-0,1 |
| Фтор | 0,0001 |
В таблице приведены данные об атомном составе клеток. Из 109 элементов периодической системы Менделеева в клетках обнаружено значительное их большинство. Особенно велико содержание в клетке четырех элементов — кислорода, углерода, азота и водорода. В сумме они составляют почти 98% всего содержимого клетки. Следующую группу составляют восемь элементов, содержание которых в клетке исчисляется десятыми и сотыми долями процента. Это сера, фосфор, хлор, калий, магний, натрий, кальций, железо. В сумме они составляют 1.9%. Все остальные элементы содержатся в клетке в исключительно малых количествах (меньше 0,01%) Таким образом, в клетке нет каких-нибудь особенных элементов, характерных только для живой природы. Это указывает на связь и единство живой и неживой природы. На атомном уровне различий между химическим составом органического и не органического мира нет. Различия обнаруживаются на более высоком уровне организации — молекулярном.
biofile.ru
Цитология
Цитология — наука о клетке. Наука о клетке называется цитологией (греч. «цитос»-клетка, «логос»-наука). Предмет цитологии — клетки многоклеточных животных и растений, а также одноклеточных организмов, к числу которых относятся бактерии, простейшие и одноклеточные водоросли. Цитология изучает строение и химический состав клеток, функции внутриклеточных структур, функции клеток в организме животных и растений, размножение и развитие клеток, приспособления клеток к условиям окружающей среды. Современная цитология — наука комплексная. Она имеет самые тесные связи с другими биологическими науками, например с ботаникой, зоологией, физиологией, учением об эволюции органического мира, а также с молекулярной биологией, химией, физикой, математикой. Цитология — одна из относительно молодых биологических наук, ее возраст около 100 лет. Возраст же термина «клетка» насчитывает свыше 300 лет. Впервые название «клетка» в середине XVII в. применил Р.Гук. Рассматривая тонкий срез пробки с помощью микроскопа, Гук увидел, что пробка состоит из ячеек - клеток.
В середине XIX столетия на основе уже многочисленных знаний о клетке Т. Шванн сформулировал клеточную теорию (1838). Он обобщил имевшиеся знания о клетке и показал, что клетка представляет основную единицу строения всех живых организмов, что клетки животных и растений сходны по своему строению. Эти положения явились важнейшими доказательствами единства происхождения всех живых организмов, единство всего органического мира. Т. Шван внес в науку правильное понимание клетки как самостоятельной единицы жизни, наименьшей единицы живого: вне клетки нет жизни.
Изучение химической организации клетки привело к выводу, что именно химические процессы лежат в основе ее жизни, что клетки всех организмов сходны по химическому составу, у них однотипно протекают основные процессы обмена веществ. Данные о сходстве химического состава клеток еще раз подтвердили единство всего органического мира.
Исследования клетки имеют большое значение для разгадки заболеваний. Именно в клетках начинают развиваться патологические изменения, приводящие к возникновению заболеваний. Чтобы понять роль клеток в развитии заболеваний, приведем несколько примеров. Одно из серьезных заболеваний человека — сахарный диабет. Причина этого заболевания — недостаточная деятельность группы клеток поджелудочной железы, вырабатывающих гормон инсулин, который участвует в регуляции сахарного обмена организма. Злокачественные изменения, приводящие к развитию раковых опухолей, возникают также на уровне клеток. Возбудители кокцидиоза — опасного заболевания кроликов, кур, гусей и уток — паразитические простейшие — кокцидии проникают в клетки кишечного эпителия и печени, растут и размножаются в них, полностью нарушают обмен веществ, а затем разрушают эти клетки. У больных кокцидиозом животных сильно нарушается деятельность пищеварительной системы и при отсутствии лечения животные погибают. Вот почему изучение строения, химического состава, обмена веществ и всех проявлений жизнедеятельности клеток необходимо не только в биологии, но также в медицине и ветеринарии.
www.examen.ru
Ответы@Mail.Ru: химический состав клетки-это?
Как и все живое, организм человека состоит из клеток. Благодаря клеточному строению организма возможны его рост, размножение, восстановление поврежденных органов и тканей и другие формы деятельности. Форма и размеры клеток различны и зависят от выполняемой ими функции. В каждой клетке различают две основные части — цитоплазму и ядро, в цитоплазме, в свою очередь, содержатся органоиды — мельчайшие структуры клетки, обеспечивающие ее жизнедеятельность. В ядре перед делением клетки образуются особые нитевидные тельца — хромосомы. Снаружи клетка покрыта мембраной, отделяющей одну клетку от другой. Пространство между клетками заполнено жидким межклеточным веществом. Главная функция мембраны состоит в том, что она обеспечивает избирательное поступление различных веществ в клетку и выведение из нее продуктов обмена. Клетки организма человека состоят из разнообразных неорганических и органических веществ. Углеводы состоят из углерода, водорода и кислорода; многие из них хорошо растворимы в воде и являются основными источниками энергии для осуществления жизненно важных процессов. Жиры образованы теми же химическими элементами, что и углеводы; они нерастворимы в воде. Жиры входят в состав клеточных мембран и также служат важнейшим источником энергии в организме. Белки — главный строительный материал клеток. Строение белков сложное: молекула белка имеет большие размеры и представляет собой цепь, состоящую из десятков и сотен более простых соединений — аминокислот. Многие белки служат ферментами, которые ускоряют течение биохимических процессов в клетке. Нуклеиновые кислоты, образующиеся в клеточном ядре, состоят из углерода, кислорода, водорода и фосфора. Различают два типа нуклеиновых кислот: дезоксирибонуклеиновые (ДНК) находятся в хромосомах и определяют состав белков клетки и передачу наследственных признаков и свойств от родителей к потомству и рибонуклеиновые (РНК) — связаны с образованием характерных для этой клетки белков.
Клетка содержит множество химических элементов. Эти элементы участвует в разных реакциях. Например, кислород (65—75 %), углерод (15—18 %), водород (8—10 %), азот (2,0—3,0 %), калий (0,15—0,4 %), сера (0,15—0,2 %), фосфор (0,2—1,0 %), хлор (0,05—0,1 %), магний (0,02—0,03 %), натрий (0,02—0,03 %), кальций (0,04—2,00 %), железо (0,01—0,015 %)
Каждая клетка содержит множество химических элементов, участвующих в различных химических реакциях. Химические процессы, протекающие в клетке — одно из основных условий её жизни, развития и функционирования. Одних химических элементов в клетке больше, других — меньше.
Химический состав клетки — множество химических элементов, участвующих в различных химических реакциях. Химические процессы, протекающие в клетке — одно из основных условий её жизни, развития и функционирования. Одних химических элементов в клетке больше, других — меньше.
Химический состав клеток Макроэлементы, их роль в клетке. В клетках разных организмов обнаружено около 70 элементов периодической системы элементов Д. И. Менделеева, но лишь 24 из них имеют вполне установленное значение и встречаются постоянно во всех типах клегок. Наибольший удельный вес в элементном составе клетки приходится на кислород, углерод, водород и азот. Это так называемые основные, или биогенные, элементы. Атомы этих элементов образуют молекулы всех органических веществ клеток; на их долю приходится более 95% массы клеток, причем относительное содержание элементов в живом веществе намного выше, чем в земной коре. К главным элементам органических молекул относятся также фосфор и сера. Жизненно важными являются, кроме того, кальций, магний, калий, натрий и хлор (в клетках животных) , входящие в состав клетки в виде ионов. Их содержание в клетке исчисляется десятыми и сотыми долями процента. Перечисленные элементы составляют группу макроэлементов. Ионы кальция принимают участие в регуляции ряда клеточных процессов, в том числе мышечного сокращения и других двигательных функций, а также в свертывании крови. Нерастворимые соли кальция участвуют в формировании костей и зубов, карбонат кальция — в образовании раковин моллюсков, укреплении оболочек клеток некоторых видов растений. Концентрация ионов магния важна для поддержания целостности и функционирования рибосом. Кроме того, магний входит в состав хлорофилла и поддерживает нормальную работу митохондрий. Ионы калия и натрия участвуют в поддержании определенной ионной силы и создании буферной среды, регулируют осмотическое давление в клетке, обусловливают нормальный ритм сердечной деятельности, обеспечивают передачу нервного импульса. Хлор в виде анионов участвует в создании солевой среды животных организмов (для растений хлор является микроэлементом) и, кроме того, иногда входит в состав органических соединений. Микроэлементы, их роль в клетке. Другие химические элементы — медь, марганец, железо, кобальт, цинк, а также (для некоторых организмов) бор, фтор, хром, селен, алюминий, кремний, молибден и иод —- содержатся в небольших количествах (не более 0,01% массы клеток) . Они относятся к группе микроэлементов. Процентное содержание в организме того или иного элемента никоим образом не характеризует степень его важности и необходимости в организме. Кобальт, например, входит в состав витамина В12, иод — в состав гормонов тироксина и тиронина, а медь — в состав ферментов, катализирующих окислительно-восстановительные процессы; кроме того, медь участвует в переносе кислорода в тканях моллюсков. Железо является составной частью комплексов, выполняющих ряд жизненно важных функций. К ним относятся, например, гем гемоглобина, некоторые ферменты и переносчики электронов (цитохром С) . Значительное число ферментов с разнообразным механизмом действия содержат ионы цинка, марганца, кобальта и молибдена. Кремний встречается у диатомовых водорослей, хвощей, губок и моллюсков. В хрящах и связках позвоночных животных его содержание может достигать нескольких сотых долей процента.
Наибольший удельный вес в элементном составе клетки приходится на кислород, углерод, водород и азот. Это так называемые основные, или биогенные, элементы. Атомы этих элементов образуют молекулы всех органических веществ клеток; на их долю приходится более 95% массы клеток, причем относительное содержание элементов в живом веществе намного выше, чем в земной коре. К главным элементам органических молекул относятся также фосфор и сера.
Химический состав клетки Стрельникова Ирина Тариеловна опубликовала бесплатный онлайн курс. Курс предназначен для изучения химического состава клеток живых организмов всем кто интересуется биологией. Лекции, ЭОР, разноуровневые задания, практикум и экзамен. Данный курс будет полезен при подготовке к ОГЭ и ЕГЭ. <a rel=»nofollow» href=»http://universor.com/kurs/khimicheskiy-sostav-kletki/» target=»_blank»>http://universor.com/kurs/khimicheskiy-sostav-kletki/</a>
Химический состав клетки — множество химических элементов, участвующих в различных химических реакциях.
touch.otvet.mail.ru
Химический состав клетки — это… Что такое Химический состав клетки?
Каждая клетка содержит множество химических элементов, участвующих в различных химических реакциях. Химические процессы, протекающие в клетке — одно из основных условий её жизни, развития и функционирования. Одних химических элементов в клетке больше, других — меньше.
На атомарном уровне различий между органическим и неорганическим миром живой природы нет: живые организмы состоят из тех же атомов, что и тела неживой природы. Однако соотношение разных химических элементов в живых организмах и в земной коре сильно различается. Кроме того, живые организмы могут отличаться от окружающей их среды по изотопному составу химических элементов.
Условно все элементы клетки можно разделить на три группы.
Макроэлементы
К макроэлементам относят кислород (65—75 %), углерод (15—18 %), водород (8—10 %), азот (2,0—3,0 %), калий (0,15—0,4 %), сера (0,15—0,2 %), фосфор (0,2—1,0 %), хлор (0,05—0,1 %), магний (0,02—0,03 %), натрий (0,02—0,03 %), кальций (0,04—2,00 %), железо (0,01—0,015 %). Такие элементы, как C, O, H, N, S, P входят в состав органических соединений.
Углерод — входит в состав всех органических веществ; скелет из атомов углерода составляет их основу. Кроме того, в виде CO2 фиксируется в процессе фотосинтеза и выделяется в ходе дыхания, в виде CO (в низких концентрациях) участвует в регуляции клеточных функций, в виде CaCO3 входит в состав минеральных скелетов.
Кислород — входит в состав практически всех органических веществ клетки. Образуется в ходе фотосинтеза при фотолизе воды. Для аэробных организмов служит окислителем в ходе клеточного дыхания, обеспечивая клетки энергией. В наибольших количествах в живых клетках содержится в составе воды.
Водород — входит в состав всех органических веществ клетки. В наибольших количествах содержится в составе воды. Некоторые бактерии окисляют молекулярный водород для получения энергии.
Азот — входит в состав белков, нуклеиновых кислот и их мономеров — аминокислот и нуклеотидов. Из организма животных выводится в составе аммиака, мочевины, гуанина или мочевой кислоты как конечный продукт азотного обмена. В виде оксида азота NO (в низких концентрациях) участвует в регуляции кровяного давления.
Сера — входит в состав серосодержащих аминокислот, поэтому содержится в большинстве белков. В небольших количествах присутствует в виде сульфат-иона в цитоплазме клеток и межклеточных жидкостях.
Фосфор — входит в состав АТФ, других нуклеотидов и нуклеиновых кислот (в виде остатков фосфорной кислоты), в состав костной ткани и зубной эмали (в виде минеральных солей), а также присутствует в цитоплазме и межклеточных жидкостях (в виде фосфат-ионов).
Магний — кофактор многих ферментов, участвующих в энергетическом обмене и синтезе ДНК; поддерживает целостность рибосом и митохондрий, входит в состав хлорофилла. В животных клетках необходим для функционирования мышечных и костных систем.
Кальций — участвует в свёртывании крови, а также служит одним из универсальных вторичных посредников, регулируя важнейшие внутриклеточные процессы (в том числе участвует в поддержании мембранного потенциала, необходим для мышечного сокращения и экзоцитоза). Нерастворимые соли кальция участвуют в формировании костей и зубов позвоночных и минеральных скелетов беспозвоночных.
Натрий — участвует в поддержании мембранного потенциала, генерации нервного импульса, процессах осморегуляции (в том числе в работе почек у человека) и создании буферной системы крови.
Калий — участвует в поддержании мембранного потенциала, генерации нервного импульса, регуляции сокращения сердечной мышцы.Содержится в межклеточных веществах.
Хлор — поддерживает электронейтральность клетки.
Микроэлементы
К микроэлементам, составляющим от 0,001 % до 0,000001 % массы тела живых существ, относят ванадий, германий, йод (входит в состав тироксина, гормона щитовидной железы), кобальт (витамин В12), марганец, никель, рутений, селен, фтор (зубная эмаль), медь, хром, цинк
Цинк — входит в состав ферментов, участвующих в спиртовом брожении, в состав инсулина
Медь — входит в состав окислительных ферментов, участвующих в синтезе цитохромов.
Селен — участвует в регуляторных процессах организма.
Ультрамикроэлементы
Ультрамикроэлементы составляют менее 0,0000001 % в организмах живых существ, к ним относят золото, серебро оказывают бактерицидное воздействие, ртуть подавляет обратное всасывание воды в почечных канальцах, оказывая воздействие на ферменты. Так же к ультрамикроэлементам относят платину и цезий. Некоторые к этой группе относят и селен, при его недостатке развиваются раковые заболевания. Функции ультрамикроэлементов еще мало понятны.
Молекулярный состав клетки
| Соединения | |||
| Неорганические | Органические | ||
| Вода Минеральные соли |
70—80 % 1,0—1,5 % |
Белки Углеводы Жиры Нуклеиновые кислоты АТФ, соли и др. вещества |
10—20 % 0,2—2,0 % 1—5 % 1,0—2,0 % 0,1—0,5 % |
См. также
dic.academic.ru