Решение линейных уравнений с примерами
Уравнение с одним неизвестным, которое после раскрытия скобок и приведения подобных членов принимает вид
aх + b = 0, где a и b произвольные числа, называется линейным уравнением с одним неизвестным. Cегодня разберёмся, как эти линейные уравнения решать.
Например, все уравнения:
2х + 3= 7 – 0,5х; 0,3х = 0; x/2 + 3 = 1/2 (х – 2) — линейные.
Значение неизвестного, обращающее уравнение в верное равенство называется решением или корнем уравнения.
Например, если в уравнении 3х + 7 = 13 вместо неизвестного х подставить число 2 , то получим верное равенство 3· 2 +7 = 13. Значит, значение х = 2 есть решение или корень уравнения.
А значение х = 3 не обращает уравнение 3х + 7 = 13 в верное равенство, так как 3· 2 +7 ≠ 13. Значит, значение х = 3 не является решением или корнем уравнения.
aх + b = 0.
Перенесем свободный член из левой части уравнения в правую, изменив при этом знак перед b на противоположный, получим
aх = ‒ b.
Если a ≠ 0, то х = ‒ b/a .
Пример 1. Решите уравнение 3х + 2 =11.
Перенесем 2 из левой части уравнения в правую, изменив при этом знак перед 2 на противоположный, получим
3х = 11 – 2.
Выполним вычитание, тогда
3х = 9.
Чтобы найти х надо разделить произведение на известный множитель, то есть
х = 9 : 3.
Значит, значение х = 3 является решением или корнем уравнения.
Ответ: х = 3.
Если а = 0 и b = 0, то получим уравнение 0х = 0. Это уравнение имеет бесконечно много решений, так как при умножении любого числа на 0 мы получаем 0,но b тоже равно 0. Решением этого уравнения является любое число.
Пример 2. Решите уравнение 5(х – 3) + 2 = 3 (х – 4) + 2х ‒ 1.
Раскроем скобки:
5х – 15 + 2 = 3х – 12 + 2х ‒ 1.
Сгруппируем в левой части члены, содержащие неизвестные, а в правой ‒ свободные члены:
5х – 3х ‒ 2х = – 12 ‒ 1 + 15 ‒ 2.
Приведем подобные члены:
0х = 0.
Ответ: х — любое число.
Если а = 0 и b ≠ 0, то получим уравнение 0х = — b. Это уравнение решений не имеет, так как при умножении любого числа на 0 мы получаем 0, но b ≠ 0 .
Пример 3. Решите уравнение х + 8 = х + 5.
Сгруппируем в левой части члены, содержащие неизвестные, а в правой ‒ свободные члены:
х – х = 5 ‒ 8.
Приведем подобные члены:
0х = ‒ 3.
Ответ: нет решений.
На рисунке 1 изображена схема решения линейного уравнения
Составим общую схему решения уравнений с одной переменной. Рассмотрим решение примера 4.
Пример 4. Пусть надо решить уравнение
1) Умножим все члены уравнения на наименьшее общее кратное знаменателей, равное 12.
2) После сокращения получим
4 (х – 4) + 3·2 (х + 1) ‒ 12 = 6·5 (х – 3) + 24х – 2 (11х + 43)
3) Чтобы отделить члены, содержащие неизвестные и свободные члены, раскроем скобки:
4х – 16 + 6х + 6 – 12 = 30х – 90 + 24х – 22х – 86 .
4) Сгруппируем в одной части члены, содержащие неизвестные, а в другой – свободные члены:
4х + 6х – 30х – 24х + 22х = ‒ 90 – 86 + 16 – 6 + 12.
5) Приведем подобные члены:
‒ 22х = ‒ 154.
6) Разделим на – 22 , Получим
х = 7.
Как видим, корень уравнения равен семи.
Вообще такие уравнения можно решать по следующей схеме:
а) привести уравнение к целому виду;
б) раскрыть скобки;
в) сгруппировать члены, содержащие неизвестное, в одной части уравнения, а свободные члены ‒ в другой;
г) привести подобные члены;
д) решить уравнение вида aх = b,которое получили после приведения подобных членов.
Однако эта схема не обязательна для всякого уравнения. При решении многих более простых уравнений приходится начинать не с первого, а со второго (Пример. 2), третьего (Пример. 1, 3) и даже с пятого этапа, как в примере 5.
Пример 5. Решите уравнение 2х = 1/4.
Находим неизвестное х = 1/4 : 2,
х = 1/8 .
Рассмотрим решение некоторых линейных уравнений, встречающихся на основном государственном экзамене.
Пример 6. Решите уравнение 2 (х + 3) = 5 – 6х.
Решение
2х + 6 = 5 – 6х
2х + 6х = 5 – 6
8х = ‒1
х = ‒1 : 8
х = ‒ 0, 125
Ответ: ‒ 0, 125
Пример 7. Решите уравнение – 6 (5 – 3х) = 8х – 7.
Решение
– 30 + 18х = 8х – 7
18х – 8х = – 7 +30
10х = 23
х = 23 : 10
х = 2,3
Ответ: 2,3
Пример 8. Решите уравнение
Решение:
3(3х – 4) = 4 · 7х + 24
9х – 12 = 28х + 24
9х – 28х = 24 + 12
-19х = 36
х = 36 : (-19)
х = — 36/19
Ответ: — .
Пример 9. Найдите f(6), если f (x + 2) = 37-х
Решение
Так как надо найти f(6), а нам известно f (x + 2),
то х + 2 = 6.
Решаем линейное уравнение х + 2 = 6,
получаем х = 6 – 2, х = 4.
Если х = 4, тогда
f(6) = 37-4 = 33 = 27
Ответ: 27.
Если у Вас остались вопросы, есть желание разобраться с решением уравнений более основательно, записывайтесь на мои уроки в РАСПИСАНИИ. Буду рада Вам помочь!
Также TutorOnline советует посмотреть новый видеоурок от нашего репетитора Ольги Александровны, который поможет разобраться как с линейными уравнениями, так и с другими.© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.
blog.tutoronline.ru
Уравнение 4 класс
Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. В 4 классе школьнику предстоит ознакомиться с множеством видов задачек и уравнений. Не всегда удается понять все с первого раза. Для того, чтобы школьнику было легче разобраться, мы рассмотрим решение уравнений, которые чаще всего вызывают трудности.
Так же читайте нашу статью «Решить систему уравнений онлайн»
Уравнения вида
\[x\cdot8=26+70\]
Чтобы получить правильный ответ при решении данного уравнения необходимо начать решение с упрощения левой части самого уравнения:
\[x\cdot8=96\]
Далее необходимо выполнить действия, направленные на нахождение неизвестного числа:
\[x=96/8\]
Выполнив деление, мы получим результат решения уравнения: \[х = 12.\]
Если вы сомневаетесь в правильности решения уравнения, то лучше всего выполнить проверку. Проверив полученный результат, подставив \[12\] вместо \[х\] и выполнив арифметические действия, мы получим следующий результат:
\[12\cdot8=20+76\]
\[96=96\]
Значение левой и правой части уравнения совпали, а значит уравнение решено правильно.
Где и как как решить уравнение 4 класс?
Родители учеников 4 класса знают, что в этом возрасте детей довольно сильно загружают решением разнообразных уравнений. Не все родители обладают необходимой базой знаний, чтобы правильно решить то или иное уравнение. Однако сегодня как родители, так и сами ученики могут воспользоваться нашим сайтом pocketteacher.ru для онлайн решения уравнений 4 класса с решением, которое подробно расписано. Решать уравнения онлайн 4 класса на нашем сайте вы можете абсолютно бесплатно. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте: pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.
pocketteacher.ru
Решение уравнений с 4 неизвестными онлайн решателем
Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Уравнения с четырьмя неизвестными может иметь множество вариантов решения. В математике довольно часто приходится сталкиваться с уравнениями такого вида. Чтобы правильно решить такие уравнения необходимо пользоваться всеми особенностями уравнений с целью упрощения и сокращения его решения.
Так же читайте нашу статью «Решить уравнения методом половинного деления онлайн»
Разберем решение следующего примера:
\[x + y + 2z — t = 9\]
\[x + y — 2z + t = 7\]
\[x — y + z + 2t = -9\]
\[x — y — z — 2t = 5\]
Выполнив сложение первого и второго уравнения по частям, можно получить весьма простое уравнение:
\[2x + 2y = 16\] или \[x + y = 8\]
Выполним аналогичные действия со 2 и 3 уравнением:
\[2x — 2y = -4\] или \[x — y = -2\]
Решаем полученные уравнения \[x + y = 8\] и \[x — y = -2\]
Получаем \[x = 3\] и \[y = 5\]
Полученные числа подставляем в 1 и 3 уравнение:
\[3 + 5 + 2z — t = 9\] или \[2z — t = 1\]
\[3 — 5 + z + 2t = -9\] или \[z + 2t = -7\]
Замена этих чисел по второму и четвертому уравнениям даст точно такие же уравнения.
Но это еще не все, поскольку осталось решить 2 равнения с 2 неизвестными. Решение данного типа уравнений вы можете посмотреть в статьях здесь.
Где можно решить уравнение с четырьмя неизвестными онлайн?
pocketteacher.ru
Как решается система уравнений? Методы решения систем уравнения.
Методы решения систем уравнения.
Разберем два вида решения систем уравнения:
1. Решение системы методом подстановки.
2. Решение системы методом почленного сложения (вычитания) уравнений системы.
Для того чтобы решить систему уравнений методом подстановки нужно следовать простому алгоритму:
1. Выражаем. Из любого уравнения выражаем одну переменную.
2. Подставляем. Подставляем в другое уравнение вместо выраженной переменной, полученное значение.
3. Решаем полученное уравнение с одной переменной. Находим решение системы.
Чтобы решить систему методом почленного сложения (вычитания) нужно:
1.Выбрать переменную у которой будем делать одинаковые коэффициенты.
2.Складываем или вычитаем уравнения, в итоге получаем уравнение с одной переменной.
3. Решаем полученное линейное уравнение. Находим решение системы.
Решением системы являются точки пересечения графиков функции.
Рассмотрим подробно на примерах решение систем.
Пример №1:
Решим методом подстановки
Решение системы уравнений методом подстановки
2x+5y=1 (1 уравнение)
x-10y=3 (2 уравнение)
1. Выражаем
Видно что во втором уравнении имеется переменная x с коэффициентом 1,отсюда получается что легче всего выразить переменную x из второго уравнения.
x=3+10y
2.После того как выразили подставляем в первое уравнение 3+10y вместо переменной x.
2(3+10y)+5y=1
3.Решаем полученное уравнение с одной переменной.
2(3+10y)+5y=1 (раскрываем скобки )
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0,2
Решением системы уравнения является точки пересечений графиков, следовательно нам нужно найти x и у, потому что точка пересечения состоит их x и y.Найдем x, в первом пункте где мы выражали туда подставляем y.
x=3+10y
x=3+10*(-0,2)=1
Точки принято записывать на первом месте пишем переменную x, а на втором переменную y.
Ответ: (1; -0,2)
Пример №2:
Решим методом почленного сложения (вычитания).
Решение системы уравнений методом сложения3x-2y=1 (1 уравнение)
2x-3y=-10 (2 уравнение)
1.Выбираем переменную, допустим, выбираем x. В первом уравнении у переменной x коэффициент 3, во втором 2. Нужно сделать коэффициенты одинаковыми, для этого мы имеем право домножить уравнения или поделить на любое число. Первое уравнение домножаем на 2, а второе на 3 и получим общий коэффициент 6.
3x-2y=1 |*2
6x-4y=2
2x-3y=-10 |*3
6x-9y=-30
2.Из первого уравнения вычтем второе, чтобы избавиться от переменной x.Решаем линейное уравнение.
__6x-4y=2
6x-9y=-30
-4y+9y=2+30
5y=32 | :5
y=6,4
3.Находим x. Подставляем в любое из уравнений найденный y, допустим в первое уравнение.
3x-2y=1
3x-2*6,4=1
3x-12,8=1
3x=1+12,8
3x=13,8 |:3
x=4,6
Точкой пересечения будет x=4,6; y=6,4
Ответ: (4,6; 6,4)
Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно. Без шуток. ЗДЕСЬ
tutomath.ru