Задания егэ по математике 1 – Материал для подготовки к ЕГЭ (ГИА) по алгебре (11 класс) на тему: Прототипы задания В1 ЕГЭ по математике | скачать бесплатно

Задание №1 ЕГЭ по математике базовый уровень


Элементарные математические вычисления


В задании №1 ЕГЭ по математике базового уровня необходимо провести элементарные вычисления — сложение, вычитание, деление и умножение дробей. Более того, данное задание аналогично первому заданию ОГЭ по математике, поэтому теория для успешного выполнения одинакова. Поэтому мы перейдем непосредственно к разбору типовых вариантов.


Разбор типовых вариантов заданий №1 ЕГЭ по математике базового уровня


Первый вариант задания
Найдите значение выражения:
Алгоритм решения:
  1. Определить порядок действий.
  2. Выполнить действия в скобках.
  3. Преобразовать смешанное число в неправильную дробь.
  4. Привести дроби в скобках к наименьшему общему знаменателю.
  5. Произвести действия в числителе.
  6. Знаменатель оставить наименьший общий.
  7. Умножить числитель получившейся дроби на 9.
  8. Полученный результат сократить и преобразовать в десятичную дробь.
Решение в общем виде:

Пояснения к решению:

Первым всегда выполняется действие в скобках, в данном случае вычитание.

Преобразуем смешанное число

в неправильную дробь. Для этого умножим целую часть на знаменатель, и прибавим числитель

3 • 15 + 1 = 46

Запишем результат в числитель, знаменатель оставим без изменения.

Действие в скобках примет вид:

Ищем наименьший общий знаменатель для дробей 4/9 и 46/15. 15 не делится на 9, удвоим наибольший знаменатель. 30 не делится на 9. утроим наибольший знаменатель, 45 делится на 9. Следовательно, 45 делится одновременно и на 15, и на 9. То есть 45 – наименьший общий знаменатель дробей 4/9 и 46/15.

Приводим дроби к общему знаменателю – 45. Для этого по основному свойству дроби необходимо и числитель и знаменатель дроби умножить на одно и то же число, чтобы дробь не изменилась. Это число называется дополнительным множителем. Дополнительный множитель к первой дроби — 5 (9*5=45). Чтобы получить в знаменателе первой дроби 45 необходимо умножить на 5 и числитель и знаменатель.

Вторую дробь умножим на 3 (15 • 3=45)

Действие в скобках после преобразования будет выглядеть так:

Произведем вычитание дробей с одинаковыми знаменателями. Для этого в числителе запишем вычитание числителей, а знаменатель оставим без изменений.

Выполним действие за скобками, в данном случае умножение на целое число. Для этого умножим числитель дроби на 9, а знаменатель оставим без изменений. Числитель и знаменатель полученной дроби сократим на 9, то есть разделим и числитель и знаменатель дроби на 9. По основному свойству дроби дробь не изменится.

Минус в числителе выносится за дробную черту.

Полученную дробь преобразуем в десятичную, поделив в столбик.

Не забудьте о знаке «минус» в ответе.

Ответ: 23,6


Второй вариант задания
Найдите значение выражения:

Алгоритм решения:
  1. Определить порядок действий.
  2. Выполнить действие в скобках.
  3. Привести дроби в скобках к наименьшему общему знаменателю.
  4. Выполнить вычитание числителей, знаменатель оставить без изменений.
  5. Выполнить деление. Для этого числитель первой дроби нужно умножить на знаменатель второй, результат записать в числитель; знаменатель первой дроби умножить на числитель второй, результат записать в знаменатель.
Решение в общем виде:
Пояснения к решению:

Первым ВСЕГДА выполняют действия в скобках, в данном случае вычитание.

Для того чтобы выполнить вычитание дробей с разными знаменателями, необходимо привести их к наименьшему общему знаменателю. Сделаем это путем подбора. Необходимо найти число, которое одновременно делится и на 4, и на 9. 9 на 4 не делится. Удвоим больший знаменатель: 18 не делится на 4. Утроим больший знаменатель: 27 не делится на 4. Увеличим больший знаменатель в 4 раза: 36 делится и на 9, и на 4 одновременно. Следовательно, 36 – наименьший общий знаменатель для дробей 1/4 и 2/9.

Примечание. Метод подбора удобен, если числа небольшие. В противном случае нужно искать НОК по алгоритму.

Найдем дополнительные множители для дробей 1/4 и 2/9. По основному свойству дроби, если и числитель, и знаменатель дроби умножить на одно и то же число, то дробь не изменится. Дробь 1/4 нужно умножить на 9(и числитель, и знаменатель), чтобы в знаменателе получился наименьший общий знаменатель 36. Дробь 2/9 нужно умножить на 4 (и числитель, и знаменатель), чтобы в знаменателе получился наименьший общий знаменатель 36.

В результате получим:

Действие в скобках примет вид:

Выполним вычитание дробей с одинаковыми знаменателями. Для этого вычтем из числителя первой дроби числитель второй, результат запишем в числитель. Знаменатель оставим прежним.

Выполним действие за скобками. Для этого числитель первой дроби нужно умножить на знаменатель второй, результат записать в числитель; знаменатель первой дроби умножить на числитель второй, результат записать в знаменатель.

Сократим (разделим и числитель и знаменатель) полученную дробь на 12.

Ответ: 21


Третий вариант задания
Найти значение выражения:

Алгоритм решения:
  1. Определить порядок действий.
  2. Первым ВСЕГДА выполняют действия в скобках, в данном случае сложение.
  3. Перевести смешанное число в неправильную дробь.
  4. Привести полученные дроби к наименьшему общему знаменателю.
  5. Выполните сложение дробей с одинаковыми знаменателями. Для этого сложить числители, результат записать в числитель, знаменатель оставить без изменений.
  6. Выполнить деление.
  7. Перевести смешанное число в неправильную дробь. Для этого целую часть умножить на знаменатель и прибавить числитель, результат записать в числитель, а знаменатель оставить прежним.
  8. Числитель первой дроби умножить на знаменатель второй – записать в числитель. Знаменатель первой дроби умножить на числитель второй результат записать в знаменатель.
  9. Сократить получившуюся дробь.
  10. Привести результат к десятичному виду.
Решение в общем виде:

Пояснения к решению:

Первым ВСЕГДА выполняют действия в скобках, в данном случае сложение.

Нужно сложить смешанное число и правильную дробь. Для этого целую часть умножить на знаменатель и прибавить числитель, результат записать в числитель, а знаменатель оставить прежним. Переведем смешанное число в неправильную дробь:

Действие в скобках примет вид:

Для того, чтобы выполнить сложение дробей с разными знаменателями, необходимо привести их к наименьшему общему знаменателю. Сделаем это путем подбора. Необходимо найти число, которое одновременно делится и на 5, и на 7. 7 на 5 не делится. Удвоим больший знаменатель: 14 не делится на 5. Утроим больший знаменатель: 21 не делится на 5. Увеличим больший знаменатель в 4 раза: 28 не делится 5. Увеличим больший знаменатель в 5 раз: 35 делится одновременно и на 5, и на 7. Следовательно, 35 – наименьший общий знаменатель для дробей 9/5 и 3/7.

Примечание. Метод подбора удобен, если числа небольшие. В противном случае нужно искать НОК по алгоритму.

Найдем дополнительные множители для дробей 9/5 и 3/7. По основному свойству дроби, если и числитель, и знаменатель дроби умножить на одно и то же число, то дробь не изменится. Дробь 9/5 нужно умножить на 7(и числитель, и знаменатель), чтобы в знаменателе получился наименьший общий знаменатель 35. Дробь 3/7 нужно умножить на 5 (и числитель, и знаменатель), чтобы в знаменателе получился наименьший общий знаменатель 35.

В результате получим:

Действие в скобках примет вид:

Выполним сложение дробей с одинаковыми знаменателями. Для этого сложим числители, результат запишем в числитель. Знаменатель оставим прежним.

Выполним действие за скобками. Переведем смешанное число в неправильную дробь, для этого целую часть нужно умножить на знаменатель и прибавить числитель, результат записать в числитель, а знаменатель оставить прежним.

Выполнить деление дробей. Числитель первой дроби нужно умножить на знаменатель второй, результат записать в числитель; знаменатель первой дроби умножить на числитель второй, результат записать в знаменатель.

Сократим (разделим и числитель, и знаменатель на одно и то же число) полученную дробь на 39.

Переведем полученную дробь в десятинную.

Ответ: 8,75


Вариант первого задания из ЕГЭ 2017 года (четвертый)
Найдите значение выражения:

(6,7 − 3,2) ⋅ 2,4

В данном случае первым действием мы выполняем вычитание в скобках, а затем производим умножение:

6,7 − 3,2 = 3,5

3,5⋅ 2,4 = 8,4

Отдельно остановлюсь на последнем действии. Его можно вычислить умножением в столбик, либо посчитать устно, воспользовавшись следующими логическими операциями:

2,4 ⋅ 3 + 2,4 ⋅ 0,5 = 2  ⋅ 3 + 0,4  ⋅ 3 + 2,4/2 = 6 + 1,2 +1,2 = 8,4

Ответ: 8,4


Вариант первого задания из ЕГЭ 2017 года (пятый)
 Найдите значение выражения:

В данном случае необходимо выполнить сложение обыкновенных дробей. Общий знаменатель для дробей в скобках — 15 (если вы забыли как определять общий знаменатель, смотрите здесь). Первую дробь домножаем на 5, вторую на 3. Получаем:

(5 + 3)/15

После сложения:

8/15

Теперь выполняем умножение:

8•6/15 = 48/15

В таком варианте дробь в ответ записать мы не можем, выделяем сначала целую часть, это 3 (45/15=3), в остатке получим:

3/15

После сокращения на 3:

1/5

и перевода в десятичный вид:

1/5 = 20/100 = 2/10 = 0,2

Не забываем про целую часть и получаем ответ:

3,2

Ответ: 3,2


Шестой вариант задания (2019)
 Найдите значение выражения:

  1. Если представить черту дроби в виде знака деления, то получим выражение: (2,7+5,8):6,8. Отсюда получаем приоритет действий: 1) сложение в скобках; 2) деление. Поэтому сначала выполняем действие в числителе.
  2. Избавляемся от десят. запятых в числителе и знаменателе. Для этого применяем основное свойство дроби и умножаем числитель и знаменатель на 10.
  3. Делим 85 на 68 в столбик.
Решение

Ответ: 1,25


Седьмой вариант задания (2019)

  1. Учитываем приоритетность операций. Здесь 1-м действием выполняется умножение, а затем вычитание.
  2. При умножении числа записываем друг под другом, выровняв их по последней цифре. В результирующем числе отделяем столько знаков после запятой, сколько имеется суммарно в обоих множителях. В данном случае нужно отделить 2 знака.
  3. При выполнении вычитания в столбик числа располагают так, чтобы десят.запятые располагались на друг под другом.
Решение

Ответ: 26,7


Восьмой вариант задания (2019)
  1. Умножаем 1/5 на 5,5. При этом 5,5 переходит в числитель дроби.
  2. Выполняем сокращение полученной дроби на 5. Получаем десят.дробь
  3. Находим конечную разность.
Решение

Ответ:0,1


Девятый вариант задания (2019)

  1. Находим разность в скобках. Для этого находим НОК (25, 38) и приводим дроби к общему знаменателю.
  2. Делим результат в скобках на дробь 6/19. Для этого переходим к умножению дробей, перевернув 9/16 и получив 16/9. Далее сокращаем множители в числителе и знаменателе и находим результирующую дробь.
  3. Полученную дробь записываем в десят.виде.
Решение

spadilo.ru

13 Задание (2016) (C1) – Репетитор по математике

13 Задание (2016) (C1)14 Задание (2016) (C2)Диагностические работы

Задание 13.

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку [].

Решение.

показать

Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.

Получим систему:

   

первое уравнение:

:

Второе условие:

Заметим, что , поэтому :

Остался единственный корень:

б) Отберем корни, принадлежащие отрезку []:

Мы видим, что отрезку [] принадлежит корень :

Ответ: а) 

б) 

Задание 14.

В основании правильной треугольной пирамиды лежит треугольник   со стороной, равной 6. Боковое ребро пирамиды равно 4. Через такую точку ребра , что , параллельно прямым и проведена плоскость.

а) Докажите, что сечение пирамиды указанной плоскостью является прямоугольником.

б) Найдите площадь сечения.

 

Решение.

показать

Построим сечение.

 

- Проведем прямую  №1 () параллельно .

Через точку проведем прямую №2 () параллельно  .

Через точку проведем прямую №3 () параллельно  .

Получили сечение - четырехугольник :

 

Данное сечение удовлетворяет всем условиям задачи:

  1.   - по построению, следовательно   (по теореме о параллельности прямой и плоскости).
  2.   - по построению, следовательно   (по теореме о параллельности прямой и плоскости).

Докажем, что четырехугольник  - прямоугольник.

,  так как - линия пересечения плоскости и плоскости , , следовательно линии пересечения плоскости сечения с плоскостями   и   (соответственно и ) параллельны.

, так как и параллельны . Следовательно, противоположные стороны четырехугольника  попарно параллельны и он является параллелограммом.

Докажем, что .  Проведем высоту пирамиды:

 

Вершина правильной пирамиды проецируется в точку , ортоцентр основания, то есть в точку пересечения медиан, высот и биссектрис треугольника .

, следовательно, по теореме о трех перпендикулярах . , , следовательно .

Найдем длины сторон прямоугольника .

(из подобия треугольников и )

;

(из подобия треугольников и )

;

Ответ: 4,5.

И.В. Фельдман, репетитор по математике.

ege-ok.ru

Задача С1 традиционно посвящена решению тригонометрических уравнений. Как правило это несложные задачи со стандартным решением. Традиционно данное задание ЕГЭ по математике состоит из двух частей, в  первой надо найти общее решение, во второй выбрать решения, принадлежащие некоторому интервалу. Эксперт оценивает данное задание в 0, 1 или 2 балла. Приведем критерии оценки данного задания.

Критерии оценки задания C1

2 балла – Обоснованно получены верные ответы в обоих пунктах

1 балл – Обоснованно получен верный ответ в пункте а) или б)

0 баллов – Решение не соответствует ни одному из критериев, перечисленных выше

Поясним критерии на примере. В работе квадратное уравнение относительно синуса сведено к простейшему тригонометрическому уравнению, например, sin x=-0,5, при этом оно вообще не решено или имеется неточность или ошибка, но отбор корней, например, на отрезке произведен правильно. В этом случае в соответствии с параметрами эксперт должен поставить 1 балл.

Примеры решений ЕГЭ с обсуждением возможных ошибок

1. а) Решите уравнение

б) Найдите все корни уравнения, принадлежащие промежутку

Решение

а)

. Если будет не верно вычислено  или указан другой период, то за эту часть задания уже не получить 1 балл.

б)

. Учитывая, что  – целое число, получаем, что оно принимает значения -2, -3, -4. Следовательно получаем следующие значения 

2. Решить уравнение 

Решение. 

или . Отсюда получаем два набора значений:

Замечание. Буква n и k надо писать разными, кроме этого обязательно писать, что они целые.

3. Пример очень обидной арифметической ошибки.

. Такая ошибка приводит к 0 баллов. Поэтому будьте внимательны и не делайте досадных ошибок.

Такое задание есть во всех вариантах ЕГЭ по математике, оно конечно же будет и в ЕГЭ по математике 2013 года.

Связанные статьи

mathi.ru

Задачи с решением ЕГЭ №1 - ЕГЭ по математике - Каталог статей

(Ф. Хаусдорф.)

' quotes[1]='"Математика - это язык, на котором написана книга природы."

(Г. Галилей)

' quotes[2]='"Кто с детских лет занимается математикой, тот развивает внимание, тренирует свой мозг, свою волю, воспитывает на­стойчивость и упорство в достижении цели."

(А. Маркушевич)

' quotes[3]='"Рано или поздно всякая правильная математическая идея находит применение в том или ином деле."

(А.Н. Крылов)

' quotes[4]='"Если вы хотите участвовать в большой жизни, то наполняйте свою голову математикой. Она окажет вам потом огромную помощь во всей вашей работе."

(М.И. Калинин)

' quotes[5]='"Разве ты не заметил, что способный к математике изощрен во всех науках в природе?"

(Платон)

' quotes[6]='"Математика есть лучшее и даже единственное введение в изу­чение природы."

(Д.И. Писарев)

' quotes[7]='"Вдохновение нужно в геометрии не меньше, чем в поэзии."

(А.С. Пушкин)

' quotes[8]='"Геометрия полна приключений, потому что за каждой задачей скрывается приключение мысли. Решить задачу – это значит пережить приключение."

(В. Произволов)

' quotes[9]='"В математике есть своя красота, как в живописи и поэзии."

(Н.Е. Жуковский)

' quotes[10]='"Химия – правая рука физики, математика – ее глаз."

(М.В. Ломоносов)

' quotes[11]='"Математику уже затем учить надо, что она ум в порядок приводит."

(М.В. Ломоносов)

' quotes[12]='"Математика - это язык, на котором говорят все точные науки."

(Н.И. Лобачевский)

' quotes[13]='"Именно математика дает надежнейшие правила: кто им следует – тому не опасен обман чувств."

(Л. Эйлер)

' quotes[14]='"Числа не управляют миром, но они показывают, как управляется мир."

(И. Гете)

' quotes[15]='"Было бы легче остановить Солнце, легче было сдвинуть Землю, чем уменьшить сумму углов в треугольнике или свести параллели к схождению..."

(В.Ф. Каган)

' quotes[16]='"Счет и вычисления - основа порядка в голове."

(Песталоцци)

' quotes[17]='"Величие человека - в его способности мыслить."

(Б. Паскаль)

' quotes[18]='"Если вы хотите научиться плавать, то смело входите в воду, а если хотите научиться решать задачи, то решайте их."

(Д.Пойа)

' quotes[19]='"Предмет математики столь серьезен, что не следует упускать ни одной возможности сделать его более занимательным."

(Б. Паскаль)

' quotes[20]='"В математических вопросах нельзя пренебрегать даже самыми мелкими ошибками."

(И. Ньютон)

' quotes[21]='"Первое условие, которое надлежит выполнять в математике, - это быть точным, второе - быть ясным и, насколько можно, простым."

(Л. Карно)

' quotes[22]='"Много из математики не остается в памяти, но когда поймешь ее, тогда легко при случае вспомнить забытое."

(М.В. Остроградский)

' quotes[23]='"Математика - это цепь понятий: выпадет одно звенышко - и не понятно будет дальнейшее."

(Н.К. Крупская)

' quotes[24]='"Математика уступает свои крепости лишь сильным и смелым."

(А.П. Конфорович)

' quotes[25]='"Доказательство - это рассуждение, которое убеждает."

(Ю.А. Шиханович)

' quotes[26]='"В каждой естественной науке заключено столько истины, сколько в ней есть математики."

(И. Кант)

' var whichquote= Math.floor(Math.random()*(quotes.length)) document.write(quotes[whichquote])

free-math.ru

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *