Задачи В6. Теория вероятностей. | Подготовка к ЕГЭ по математике
Предлагаю рассмотреть решение Задач №4 из открытого банка задач ЕГЭ по математике.
Часть 1.
(Смотрите часть 2 здесь)
При решении задач мы будем опираться на классическое определение вероятности события.
Задача 1. На экзамене 40 вопросов, Коля не выучил 4 из них. Найдите вероятность того, что ему попадется выученный вопрос.
Решение: + показать
Задача 2. В фирме такси в данный момент свободно 35 машин: 11 красных, 17 фиолетовых и 7 зеленых. По вызову выехала одна из машин, случайно оказавшаяся ближе всего к заказчице. Найдите вероятность того, что к ней приедет зеленое такси.
Решение: + показать Вероятность того, что к заказчице приедет зеленое такси равна Ответ: 0,2.
Задача 3. В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 7 очков. Результат округлите до сотых.
В сумме выпадет 7 очков в следующих вариантах: 5+1+1 (3 комбинации) 1+2+4 (6 комбинаций) 1+3+3 (3 комбинации) 2+2+3 (3 комбинации) Всего вариантов. Каждый из трех кубиков может выпасть шестью гранями, поэтому общее число исходов равно . Следовательно, вероятность того, что в сумме выпадет 7 очков, равна Ответ: 0,07.
Задача 4. В случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что решка не выпадет ни разу.
Решение: + показать Благоприятный исход: орел-орел-орел-орел. Всего исходов – Значит, вероятность того, что решка не выпадет ни разу – есть Ответ: 0,0625.
Задача 5. Научная конференция проводится в 3 дня. Всего запланировано 75 докладов — в первый день 27 докладов, остальные распределены поровну между вторым и третьим днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?
Решение: + показать Всего запланировано 75 докладов, и так как в первый день запланировано 27, то на оставшиеся два дня остается 75-27=48 докладов, при этом во второй и третий дни будет прочитано по 48:2=24 доклада. Значит вероятность, что доклад профессора М. окажется запланированным на третий день есть Ответ: 0,32.
Задача 6. Перед началом первого тура чемпионата по шашкам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 шашистов, среди которых 3 участника из России, в том числе Василий Лукин. Найдите вероятность того, что в первом туре Василий Лукин будет играть с каким-либо шашистом из России?
Решение: + показать В первом туре Василий Лукин может сыграть с 26 − 1 = 25 шашистом, из которых 3 − 1 = 2 из России. Значит, вероятность того, что в первом туре Василий Лукин будет играть с каким-либо шашистом из России, есть Ответ: 0,08.
Задача 7. В чемпионате мира учавствуют 20 команд. С помощью жребия их нужно разделить на пять групп по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп:
1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5.
Капитаны команд тянут по одной карточке. Какова вероятность того, что команда Китая окажется в первой группе?
Решение: + показать Количество карточек с номером «1» – 4 штуки. Всего карточек (команд) – 20. Значит, вероятность того, что команда Китая окажется в первой группе равна Ответ: 0,2.
Задача 8. На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет меньше 4?
Решение: + показать На клавиатуре телефона цифр меньше 4-х – 4 штуки (0; 1; 2; 3). Всего цифр 10. Значит, вероятность того, что случайно нажатая цифра будет меньше 4 равна Ответ: 0,4.
Задача 9. Какова вероятность того, что случайно выбранное натуральное число от 41 до 56 делится на 2?
Решение: + показать От 41 до 56 ровно 16 чисел. Среди них четных 8 штук (42; 44; 46; 48; 50; 52; 54; 56). Значит, вероятность того, что случайно выбранное натуральное число от 41 до 56 делится на 2 равна Ответ: 0,5.
Задача 10. Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию А=«сумма очков равна 10»?
Решение: + показать Сумма очков равна 10 в следующих трех случаях: 4+6; 6+4; 5+5. Ответ: 3.
Задача 11. В классе 21 учащийся, среди них два друга — Вадим и Олег. Класс случайным образом разбивают на 3 равные группы. Найдите вероятность того, что Вадим и Олег окажутся в одной группе.
Решение: + показать Пусть один из друзей находится в некоторой группе. Вместе с ним в группе окажутся 6 человек из 20 оставшихся учащихся. Вероятность того, что друг окажется среди этих 6 человек, равна 6 : 20 = 0,3. Ответ: 0,3.
Задача 12. Вероятность того, что новый блендер в течение года поступит в гарантийный ремонт, равна 0,096. В некотором городе из 1000 проданных блендеров в течение года в гарантийную мастерскую поступило 102 штуки. На сколько отличается частота события «гарантийный ремонт» от его вероятности в этом городе?
Решение: + показать Частота события «гарантийный ремонт» составляет Вероятность же, что новый блендер в течение года поступит в гарантийный ремонт, равна 0,096. Разница между частотой события и вероятностью составляет Ответ: 0,006.
Задача 13. Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали ходить. Найдите вероятность того, что часовая стрелка застыла, достигнув отметки 6, но не дойдя до отметки 9 часов.
Решение: + показать На циферблате между 6 часами и 9 располагаются три часовых деления. Всего на циферблате 12 часовых делений. Поэтому искомая вероятность равна: Ответ: 0,25.
Задача 14. За круглый стол на 5 стульев в случайном порядке рассаживаются 3 мальчика и 2 девочки. Найдите вероятность того, что обе девочки будут сидеть рядом.
Решение: + показать «Фиксируем» одну из девочек на одном из стульев. Благоприятной ситуацией для нас будет посадка второй девочки на один из двух стульев, стоящих рядом со стулом, занятым первой девочкой. Всего свободных стульев для второй девочки – . Итак, вероятность того, что обе девочки будут сидеть рядом есть , то есть Ответ:
Часть 2
Вы можете пройти тест по Задачам №4.
egemaximum.ru
Репетитор по математике.Теория вероятности формулы и примеры решения задач
События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).
Зачем нужна теория вероятности
Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.
Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.
В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.
Основные понятия теории вероятности
Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.
Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.
Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.
События А и В называется несовместными, если они не могут произойти одновременно.
Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом .
Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом .
Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.
- Вероятность принимает значения на отрезке от 0 до 1, т.е. .
- Вероятность невозможного события равна 0, т.е. .
- Вероятность достоверного события равна 1, т.e. .
- Если события A и В несовместные, то вероятность их суммы равна сумме их вероятностей, т.е. .
Важным частным случаем является ситуация, когда имеется равновероятных элементарных исходов, и произвольные из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле . Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.
Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов , прямо в условии написано число всех исходов .
Ответ получаем по формуле .
Пример задачи из ЕГЭ по математике по определению вероятности
На столе лежат 20 пирожков — 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?
Решение.
Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть , где А — это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:
Ответ: 0,4
Независимые, противоположные и произвольные события
Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.
События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.
Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. .
Теоремы сложения и умножения вероятностей, формулы
Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. .
Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае .
Последние 2 утверждения называются теоремами сложения и умножения вероятностей.
Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.
Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Для третьего ученика остается 4 свободных места, для четвертого — 3, для пятого — 2, шестой займет единственное оставшееся место. Чтобы найти число всех вариантов, надо найти произведение , которое обозначается символом 6! и читается «шесть факториал».
В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов В нашем случае .
Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение .
В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам
В нашем случае .
И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго — 5 способами, третьего — четырьмя. Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: . В общем случае ответ на этот вопрос дает формула для числа сочетаний из элементов по элементам:
В нашем случае .
Примеры решения задач из ЕГЭ по математике на определение вероятности
Задача 1. Из сборника под ред. Ященко.
На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.
Решение:
.
Ответ: 0,3.
Задача 2. Из сборника под ред. Ященко.
В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.
Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:
Ответ: 0,98.
Задача 3.
Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.
Решение:
Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие «У. верно решит ровно 9 задач» входит в условие «У. верно решит больше 8 задач», но не относится к условию «У. верно решит больше 9 задач».
Однако, условие «У. верно решит больше 9 задач» содержится в условии «У. верно решит больше 8 задач». Таким образом, если мы обозначим события: «У. верно решит ровно 9 задач» — через А, «У. верно решит больше 8 задач» — через B, «У. верно решит больше 9 задач» через С. То решение будет выглядеть следующим образом:
.
Ответ: 0,06.
Задача 4.
На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Решение.
Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме «Тригонометрия», либо к теме «Внешние углы». По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:
Ответ: 0,35.
Задача 5.
Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.
Решение:
Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.
Тогда укажем варианты таких событий. Примем обозначения: — лампочка горит, — лампочка перегорела. И сразу рядом подсчитаем вероятность события. Например, вероятность события, в котором произошли три независимых события «лампочка перегорела», «лампочка горит», «лампочка горит»: , где вероятность события «лампочка горит» подсчитывается как вероятность события, противоположного событию «лампочка не горит», а именно: .
Заметим, что благоприятных нам несовместных событий всего 7. Вероятность таких событий равна сумме вероятностей каждого из событий: .
Ответ: 0,975608.
Еще одну задачку вы можете посмотреть на рисунке:
Таким образом, мы с вами поняли, что такое теория вероятности формулы и примеры решения задач по которой вам могут встретиться в варианте ЕГЭ.
repetitor-mathematics.ru
Репетитор по математике и физике » Задачи на вероятность из ЕГЭ
Автор Сергей
Пятница, Декабрь 9, 2011
С 2012 года организаторы ЕГЭ по математике решили внести в него дополнительное новшество. Задачи B10 отныне будут посвящены вычислению вероятностей случайных событий. При том, что выполнение этих заданий требует наличия у учеников самых элементарных знаний из области теории вероятностей, у многих старшеклассников решение этих задач вызывает серьезные затруднения. Что же нужно знать и уметь школьнику для расчета вероятностей случайных событий? Разберем несколько примеров, которые были в пробной диагностической работе по математике, прошедшей в московских школах 7 декабря 2011 года.
Решение таких задач основывается на следующих теоретических фактах:
- Случайным называется событие, исход которого невозможно точно предсказать заранее (подбрасывание монеты, игральной кости, выигрыш лотерейного билета и т. п.).
- Вероятность случайного события равна отношению числа благоприятных исходов к общему числу исходов события (к примеру, вероятность того, что при подбрасывании монеты выпадет «орел», равна 1/2. Действительно, событие является случайным, общее число исходов равно 2, так как может выпасть либо «орел», либо «решка», число благоприятных исходов равно 1. Тогда искомая вероятность по определению равна 1/2).
- Вероятность события не может быть больше 1 (число благоприятных исходов, понятно, не может превышать общее число исходов события).
- Два события называются независимыми, если появление одного из них не влияет на вероятность появления другого. Вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий (теорема об умножении вероятностей).
- Два события называются несовместными, если они не могут появиться одновременно в результате однократного проведения случайного эксперимента. Вероятность появления одного из двух несовместных событий, безразлично какого, равна сумме вероятностей этих событий (теорема о сложении вероятностей).
Пример 1. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 3 очка. Результат округлите до сотых.
Решение:
Всего возможных исходов эксперимента:
- на первом кубике выпадает число 1, на втором — 1 или 2, или 3, или 4, или 5, или 6 — шесть вариантов;
- на первом кубике выпадает число 2, на втором — 1 или 2, или 3, или 4, или 5, или 6 — шесть вариантов;
- и так далее…
- на первом кубике выпадает число 6, на втором — 1 или 2, или 3, или 4, или 5, или 6 — шесть вариантов.
Итого, 36 возможных исходов.
Всего благоприятных исходов эксперимента (то есть, что в сумме выпадет 3 очка):
- на первом кубике выпадает число 1, на втором — 2 — один вариант;
- на первом кубике выпадает число 2, на втором — 1 — один вариант.
Итого, 2 благоприятных исхода.
Факт выпадения того или иного числа на кубиках является случайным событием, следовательно, искомая вероятность определяется отношением числа благоприятных исходов к общему числу исходов эксперимента: 2/36 = 0,0(5) ≈ 0,06 (с учетом округления до сотых). Ответ: 0,06.
Пример 2. В кармане у Пети было 4 монеты по рублю и 2 монеты по 2 рубля. Петя, не глядя, переложил какие-то три монеты в другой карман. Найдите вероятность того, что обе двухрублевые монеты лежат в одном кармане.
Решение:
Вероятность того, что среди трех наугад взятых Петей монет не будет ни одной монеты по 2 рубля, равна 4/6 · 3/5 · 2/4 = 1/5 (действительно, берем монеты по одной: сначала из шести 6 вариантов подходит 4, далее из 5 вариантов подходит 3, далее из 4 вариантов подходит 2; все эти независимые события должны быть реализованы вместе, значит общая вероятность определяется произведением вероятностей каждого из событий).
Вероятность того, что среди трех наугад взятых Петей монет будет две монеты по 2 рубля, равна 2/6 · 1/5 · 4/4 + 4/6 · 2/5 · 1/4 + 2/6 · 4/5 · 1/4 = 1/5 (рассуждения аналогичны предыдущим, сложение появляется за счет того, что рассматриваемые события являются несовместными).
Первое и второе события являются несовместными, поскольку не могут быть реализованы одновременно. По теореме о сложении вероятностей искомая вероятность равняется сумме вероятностей каждого события: 1/5 + 1/5 = 2/5 = 0,4. Ответ: 0,4.
Пример 3. В чемпионате по гимнастике участвуют 76 спортсменок: 30 из России, 27 из Украины, остальные — из Белоруссии. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Белоруссии.
Решение: выбор спортсменки, выступающей первой, определяется жребием, поэтому его можно считать случайным событием. В нашем случае число благоприятных исходов этого события равно 76 — 30 — 27 = 19 (число спортсменок, выступающих за Белоруссию). Общее число возможных исходов события равно 76 (общее число спортсменок, участвующих в чемпионате). Вероятность случайного события — это отношение числа благоприятных исходов к общему числу исходов события, в нашем случае она равняется 19/76 = 0,25. Ответ: 0,25.
Современный человек должен быть знаком с основами теории вероятностей. Решение о введении в экзамен задач на вычисление вероятности событий кажется поэтому вполне оправданным. Но бояться этих заданий не стоит, успех в сдаче ЕГЭ зависит от качества подготовки ученика, а это уже напрямую зависит от преподавателя.
Репетитор по математике в Тропарёво
Сергей Валерьевич
yourtutor.info
Решение задач профильного ЕГЭ по теме «Теория вероятности»
Вероятность. Задачи профильного ЕГЭ по математике.
Подготовила учитель математики МБОУ «Лицей №4» г. Рузаевка
Овчинникова Т.В.
Определение вероятности
Вероятностью события A называют отношение числа m благоприятствующих этому событию исходов к общему числу n всех равновозможных несовместимых событий, которые могут произойти в результате одного испытания или наблюдения:
m
Р =
n
Пусть k – количество бросков монеты, тогда количество всевозможных исходов: n = 2 k .
Пусть k – количество бросков кубика, тогда количество всевозможных исходов: n = 6 k .
В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.
Решение.
Всего 4 варианта: о; о о; р р; р р; о .
Благоприятных 2: о; р и р; о .
Вероятность равна 2/4 = 1/2 = 0,5 .
Ответ: 0,5.
В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых.
Решение.
Игральные кости – это кубики с 6 гранями. На первом кубике может выпасть 1, 2, 3, 4, 5 или 6 очков. Каждому варианту выпадения очков соответствует 6 вариантов выпадения очков на втором кубике.
Т.е. всего различных вариантов 6×6 = 36.
Варианты (исходы эксперимента) будут такие:
1; 1 1; 2 1; 3 1; 4 1; 5 1; 6
2; 1 2; 2 2; 3 2; 4 2; 5 2; 6
и т.д. …………………………
6; 1 6; 2 6; 3 6; 4 6; 5 6; 6
Подсчитаем количество исходов (вариантов), в которых сумма очков двух кубиков равна 8.
2; 6 3; 5; 4; 4 5; 3 6; 2.
Всего 5 вариантов.
Найдем вероятность: 5/36 = 0,138 ≈ 0,14.
Ответ: 0,14.
В сборнике билетов по биологии всего 55 билетов, в 11 из них встречается вопрос по ботанике. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике.
Решение:
Вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике, равна 11/55 =1/5 = 0,2.
Ответ: 0,2.
В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные − из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая.
Решение.
Всего участвует 20 спортсменок,
из которых 20 – 8 – 7 = 5 спортсменок из Китая.
Вероятность того, что спортсменка, выступающая первой, окажется из Китая, равна 5/20 = 1/4 = 0,25.
Ответ: 0,25.
Научная конференция проводится в 5 дней. Всего запланировано 75 докладов − первые три дня по 17 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?
Решение:
В последний день конференции запланировано
(75 – 17 × 3) : 2 = 12 докладов.
Вероятность того, что доклад профессора М. окажется запланированным на последний день конференции, равна 12/75 = 4/25 = 0,16.
Ответ: 0,16.
Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 10 участников из России, в том числе Руслан Орлов. Найдите вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России?
Решение:
Нужно учесть, что Руслан Орлов должен играть с каким-либо бадминтонистом из России. И сам Руслан Орлов тоже из России.
Вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России, равна 9/25 = 36/100 = 0,36.
Ответ: 0,36.
Даша дважды бросает игральный кубик. В сумме у нее выпало 8 очков. Найдите вероятность того, что при первом броске выпало 2 очка.
Решение.
В сумме на двух кубиках должно выпасть 8 очков. Это возможно, если будут следующие комбинации:
2 и 6
6 и 2
3 и 5
5 и 3
4 и 4
Всего 5 вариантов. Подсчитаем количество исходов (вариантов), в которых при первом броске выпало 2 очка.
Такой вариант 1.
Найдем вероятность: 1/5 = 0,2.
Ответ: 0,2.
В чемпионате мира участвует 20 команд. С помощью жребия их нужно разделить на пять групп по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп:
1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5.
Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется в третьей группе.
Решение:
Всего команд 20, групп – 5.
В каждой группе – 4 команды.
Итак, всего исходов получилось 20, нужных нам – 4, значит, вероятность выпадения нужного исхода 4/20 = 0,2.
Ответ: 0,2.
Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая – 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая – 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Решение:
Вероятность того, что стекло куплено на первой фабрике и оно бракованное:
р 1 = 0,45 · 0,03 = 0,0135.
Вероятность того, что стекло куплено на второй фабрике и оно бракованное:
р 2 = 0,55 · 0,01 = 0,0055.
Поэтому по формуле полной вероятности вероятность того, что случайно купленное в магазине стекло окажется бракованным равна
р = р 1 + р 2 = 0,0135 + 0,0055 = 0,019.
Ответ: 0,019.
Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,52. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,3.
Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.
Решение:
Возможность выиграть первую и вторую партию не зависят друг от друга. Вероятность произведения независимых событий равна произведению их вероятностей:
р = 0,52 · 0,3 = 0,156.
Ответ: 0,156.
Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два раза промахнулся. Результат округлите до сотых.
Решение:
Результат каждого следующего выстрела не зависит от предыдущих. Поэтому события «попал при первом выстреле», «попал при втором выстреле» и т.д. независимы.
Вероятность каждого попадания равна 0,8. Значит, вероятность промаха равна 1 – 0,8 = 0,2.
1 выстрел: 0,8
2 выстрел: 0,8
3 выстрел: 0,8
4 выстрел: 0,2
5 выстрел: 0,2
По формуле умножения вероятностей независимых событий, получаем, что искомая вероятность равна:
0,8 ∙ 0,8 ∙ 0,8 ∙ 0,2 ∙ 0,2 = 0,02048 ≈ 0,02.
Ответ: 0,02.
В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.
Решение:
Найдем вероятность того, что неисправны оба автомата.
Эти события независимые, вероятность их произведения равна произведению вероятностей этих событий:
0,05 · 0,05 = 0,0025.
Событие, состоящее в том, что исправен хотя бы один автомат, противоположное.
Следовательно, его вероятность равна
1 − 0,0025 = 0,9975.
Ответ: 0,9975.
Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.
Решение:
Вероятность того, что Джон промахнется, если схватит пристрелянный револьвер равна:
0,4 · (1 − 0,9) = 0,04
Вероятность того, что Джон промахнется, если схватит непристрелянный револьвер равна:
0,6 · (1 − 0,2) = 0,48
Эти события несовместны, вероятность их суммы равна сумме вероятностей этих событий:
0,04 + 0,48 = 0,52.
Ответ: 0,52.
При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,4, а при каждом последующем – 0,6. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98?
Решение:
Можно решать задачу «по действиям», вычисляя вероятность уцелеть после ряда последовательных промахов:
Р(1) = 0,6;
Р(2) = Р(1) · 0,4 = 0,24;
Р(3) = Р(2) · 0,4 = 0,096;
Р(4) = Р(3) · 0,4 = 0,0384;
Р(5) = Р(4) · 0,4 = 0,01536.
Последняя вероятность меньше 0,02, поэтому достаточно пяти выстрелов по мишени.
Ответ: 5.
В классе 26 человек, среди них два близнеца – Андрей и Сергей. Класс случайным образом делят на две группы по 13 человек в каждой. Найдите вероятность того, что Андрей и Сергей окажутся в одной группе.
Решение:
Пусть один из близнецов находится в некоторой группе.
Вместе с ним в группе окажутся 12 человек из 25 оставшихся одноклассников.
Вероятность того, что второй близнец окажется среди этих 12 человек, равна
P = 12 : 25 = 0,48.
Ответ: 0,48.
На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может, поэтому на каждом разветвлении паук выбирает один из путей, по которому ещё не полз. Считая, что выбор дальнейшего пути чисто случайный, определите, с какой вероятностью паук придёт к выходу D.
Решение:
На каждой из четырех отмеченных развилок паук с вероятностью 0,5 может выбрать или путь, ведущий к выходу D, или другой путь. Это независимые события, вероятность их произведения (паук дойдет до выхода D) равна произведению вероятностей этих событий. Поэтому вероятность прийти к выходу D равна (0,5) 4 = 0,0625.
Ответ: 0,0625.
multiurok.ru
Пример решения задач по теории вероятности из ЕГЭ
Математика – это довольно разносторонний предмет. Сейчас предлагаем рассмотреть пример решения задач по теории вероятности, которая является одним из направлений математики. Оговорим сразу то, что умение решать подобные задания станет большим плюсом при сдаче единого государственного экзамена. Задачи на теорию вероятности ЕГЭ содержит в части В, которая, соответственно, оценивается выше, чем тестовые задания группы А.
Именно эта группа изучается данной наукой. Что такое случайное событие? При проведении любого опыта мы получаем результат. Есть такие испытания, которые имеют определенный результат с вероятностью сто или ноль процентов. Такие события называются достоверные и невозможные соответственно. Нас же интересуют те, которые могут произойти или нет, то есть случайные. Для нахождения вероятности события используют формулу Р=m/n, где m – это варианты, которые нас удовлетворяют, а n – все возможные исходы. Теперь рассмотрим пример решения задач по теории вероятности.
Комбинаторика. Задачи
Теория вероятности включает в себя и следующий раздел, задания данного типа часто встречаются на экзамене. Условие: студенческая группа состоит из двадцати трех человек (десять мужчин и тринадцать девушек). Нужно выбрать двух человек. Сколько существует способов избрать двух парней или девушек? По условию, нам необходимо найти двух девушек или двух мужчин. Видим, что формулировка нам подсказывает верное решение:
- Находим количество способов выбрать мужчин.
- Затем девушек.
- Складываем полученные результаты.
Выполняем первое действие: = 45. Далее девушки: и получаем 78 способов. Последнее действие: 45+78=123. Получается, что существует 123 способа выбора однополой пары типа староста и заместитель, не важно девушек или мужчин.
Классические задачи
Мы рассмотрели пример из комбинаторики, переходим к следующему этапу. Рассмотрим пример решения задач по теории вероятности на нахождение классической вероятности происхождения события.
Условие: Перед вами стоит короб, внутри находятся шары разного цвета, а именно пятнадцать белых, пять красных и десять черных. Вам предлагают вытащить один наугад. Какова вероятность того, что вы возьмете шар: 1) белый; 2) красный; 3) черный.
Наше преимущество – подсчет всех возможных вариантов, в данном примере у нас их тридцать. Сейчас мы нашли n. Обозначим буквой А извлеченный белый шар, у нас получается m равно пятнадцати – это благополучные исходы. Пользуясь основным правилом нахождения вероятности, находим: Р=15/30, то есть 1/2. С такой вероятностью нам попадется белый шарик.
Аналогичным способом находим В – красные шары и С – черные. Р(В) будет равняться 1/6, а вероятность события С=1/3. Чтобы проверить, верно ли решена задача, можно воспользоваться правилом суммы вероятностей. Наш комплекс состоит из событий А, В и С, в сумме они должны составлять единицу. В результате проверки, мы получили то самое искомое значение, а значит, задание решено верно. Ответ: 1) 0,5; 2) 0,17; 3) 0,33.
ЕГЭ
Рассмотрим пример решения задач по теории вероятности из билетов ЕГЭ. Часто встречаются примеры с бросанием монетки. Предлагаем разобрать один из них. Монетку бросают трижды, какова вероятность того, что выпадет дважды орел и один раз решка. Переформулируем задание: бросаем три монеты одновременно. Для упрощения составляем таблицы. Для одной монеты все понятно:
орел или один | решка или два |
Две монеты:
Один | один |
Один | два |
Два | один |
Два | два |
С двумя монетами мы имеем уже четыре исхода, а вот с тремя немного задача усложняется, а исходов становится восемь.
1 | Орел | Орел | Орел |
2 | Орел | Орел | Решка |
3 | Орел | Решка | Орел |
4 | Решка | Орел | Орел |
5 | Орел | Решка | Решка |
6 | Решка | Орел | Решка |
7 | Решка | Решка | Орел |
8 | Решка | Решка | Решка |
Теперь посчитываем варианты, которые нас устраивают: 2; 3; 4. Получаем, что три варианта из восьми нас удовлетворяют, то есть ответ 3/8.
fb.ru
Теория вероятностей на ЕГЭ. Простые задачи. Часть1
Теория вероятностей на ЕГЭ по математике может быть представлена как в виде простых задач на классическое определение вероятности, так и в виде достаточно сложных, на применение соответствующих теорем.
В этой части рассмотрим задачи, для решения которых достаточно применения определения вероятности. Иногда здесь мы будем применять также формулу для вычисления вероятности противоположного события. Хотя без этой формулы здесь можно обойтись, она все равно понадобится при решении следующих задач.
Теоретическая часть
Случайным называют событие, которое может произойти или не произойти (заранее предсказать невозможно) во время наблюдения или испытания.
Пусть при проведении испытания (бросание монеты или кубика, вытягивание экзаменационного билета и т. д.) возможны равновозможных исходов. Например, при подбрасывании монеты число всех исходов равно 2, так как кроме выпадения «решки» или «орла» других исходов быть не может. При броске игрального кубика возможны 6 исходов, так как на верхней грани кубика равновозможно появление любого из чисел от 1 до 6. Пусть также некоторому событию А благоприятствуют исходов.
Вероятностью события А называется отношение числа благоприятных для этого события исходов к общему числу равновозможных исходов (это классическое определение вероятности). Пишем
Например, пусть событие А состоит в выпадении нечётного числа очков при бросании кубика. Всего возможны 6 исходов: выпадение на верхней грани кубика 1, 2, 3, 4, 5, 6. При этом благоприятными для события А являются исходы с выпадением 1, 3, 5. Таким образом, .
Заметим, что всегда выполняется двойное неравенство , поэтому вероятность любого события А лежит на отрезке [0; 1], то есть . Если у вас в ответе вероятность получается больше единицы, значит, вы где-то ошиблись и решение нужно перепроверить.
События А и В называются противоположными друг другу, если любой исход благоприятен ровно для одного из них.
Например, при бросании кубика событие «выпало нечётное число» является противоположным событию «выпало чётное число».
Событие, противоположное событию А, обозначают. Из определения противоположных событий следует , значит, .
Задачи о выборе объектов из набора
В этих задачах нужно подсчитать общее число объектов (равно общему числу исходов) и число подходящих объектов (равно числу благоприятных исходов). После этого следует воспользоваться определением вероятности.
Задача 1. В чемпионате мира участвуют 24 команды. С помощью жребия их нужно разделить на четыре группы по шесть команд в каждой. В ящике вперемешку лежат карточки с номерами групп:
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4.
Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется в третьей группе?
Решение.
Общее число исходов равно числу карточек – их 24. Благоприятных исходов 6 (так как номер 3 написан на шести карточках). Искомая вероятность равна .
Ответ: 0,25.
Задача 2. В урне 14 красных, 9 жёлтых и 7 зелёных шаров. Из урны наугад достают один шар. Какова вероятность того, что этот шар окажется жёлтым?
Решение.
Общее число исходов равно числу шаров: 14 + 9 + 7 = 30. Число исходов, благоприятствующих данному событию, равно 9. Искомая вероятность равна равна .
Ответ: 0,3
Задача 3. На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет чётной и больше 5?
Решение.
Исходом здесь является нажатие определённой клавиши, поэтому всего имеется 10 равновозможных исходов. Указанному событию благоприятствуют исходы, означающие нажатие клавиши 6 или 8. Таких исходов два. Искомая вероятность равна .
Ответ: 0,2.
Задача 4. Какова вероятность того, что случайно выбранное натуральное число от 4 до 23 делится на три?
Решение.
На отрезке от 4 до 23 имеется 23 – 4 + 1 = 20 натуральных чисел, значит, всего возможны 20 исходов. На этом отрезке кратны трём следующие числа: 6, 9, 12, 15, 18, 21. Всего таких чисел 6, поэтому рассматриваемому событию благоприятствуют 6 исходов. Искомая вероятность равна .
Ответ: 0,3.
Задача 5. Из 20 билетов, предлагаемых на экзамене, школьник может ответить только на 17. Какова вероятность того, что школьник не сможет ответить на выбранный наугад билет?
Решение.
1 -й способ.
Так как школьник может ответить на 17 билетов, то на 3 билета он ответить не может. Вероятность получить один из этих билетов по определению равна .
2-й способ.
Обозначим через А событие «школьник может ответить на билет». Тогда . Вероятность противоположного события равна =1 – 0,85 = 0,15.
Ответ: 0,15.
Задача 6. В чемпионате по художественной гимнастике участвуют 20 спортсменок: 6 из России, 5 из Германии, остальные – из Франции. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая седьмой, окажется из Франции.
Решение.
Всего 20 спортсменок, у всех равные шансы выступать седьмой. Поэтому имеются 20 равновероятных исходов. Из Франции 20 – 6 – 5 = 9 спортсменок, поэтому имеются 9 благоприятных для указанного события исходов. Искомая вероятность равна .
Ответ: 0,45.
Задача 7. Научная конференция проводится в 5 дней. Всего запланировано 50 докладов – первые три дня по 12 докладов, остальные распределены поровну между четвёртым и пятым днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора Н. окажется запланированным на последний день конференции?
Решение.
Сначала найдём, сколько докладов запланировано на последний день. На первые три дня запланировано докладов. Остаются ещё 50 – 36 = 14 докладов, которые распределяются поровну между оставшимися двумя днями, поэтому в последний день запланировано докладов.
Будем считать исходом порядковый номер доклада профессора Н. Всего таких равновозможных исходов 50. Благоприятствуют указанному событию 7 исходов (последние 7 номеров в списке докладов). Искомая вероятность равна .
Ответ: 0,14.
Задача 8. На борту самолёта 10 мест рядом с запасными выходами и 15 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажиров высокого роста. Пассажир К. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру К. достанется удобное место, если всего в самолёте 200 мест.
Решение.
Исход в этой задаче – выбор места. Всего имеется 200 равновозможных исходов. Благоприятствуют событию «выбранное место удобное» 15 + 10 = 25 исходов. Искомая вероятность равна .
Ответ: 0,125.
Задача 9. Из 1000 собранных на заводе кофемолок 7 штук бракованных. Эксперт проверяет одну наугад выбранную кофемолку из этой 1000. Найдите вероятность того, что проверяемая кофемолка окажется бракованной.
Решение.
При выборе кофемолки наугад возможны 1000 исходов, событию А «выбранная кофемолка бракованная» благоприятны 7 исходов. По определению вероятности .
Ответ: 0,007.
Задача 10. Завод производит холодильники. В среднем на 100 качественных холодильников приходится 15 холодильников со скрытыми дефектами. Найдите вероятность того, что купленный холодильник окажется качественным. Результат округлите до сотых.
Решение.
Эта задача похожа на предыдущую. Однако формулировка «на 100 качественных холодильников приходится 15 с дефектами» указывает нам, что дефектные 15 штук не входят в 100 качественных. Поэтому общее число исходов равно 100 + 15 =115 (равно общему числу холодильников), благоприятных исходов 100. Искомая вероятность равна . Для подсчёта приближённого значения дроби удобно воспользоваться делением уголком. Получаем 0,869…, что приблизительно равно 0,87.
Ответ: 0,87.
Задача 11. Перед началом первого тура чемпионата по теннису участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 16 теннисистов, среди которых 7 участников из России, в том числе Максим Зайцев. Найдите вероятность того, что в первом туре Максим Зайцев будет играть с каким-либо теннисистом из России.
Решение.
Как и в предыдущей задаче, необходимо внимательно прочитать условие и понять, что является исходом, а что – благоприятным исходом (так, неосмысленное применение формулы вероятности приводит к неправильному ответу ).
Здесь исход – это соперник Максима Зайцева. Так как всего теннисистов 16, а сам с собой Максим играть не может, то имеется 16 – 1 = 15 равновероятных исходов. Благоприятный исход – соперник из России. Таких благоприятных исходов 7 – 1 = 6 (из числа россиян исключаем самого Максима). Искомая вероятность равна .
Ответ: 0,4.
Задача 12. Футбольную секцию посещают 33 человека, среди них два брата – Антон и Дмитрий. Посещающих секцию случайным образом делят на три команды по 11 человек в каждой. Найдите вероятность того, что Антон и Дмитрий окажутся в одной команде.
Решение.
Сформируем команды, последовательно помещая футболистов на свободные места, при этом начнем с Антона и Дмитрия. Сначала поместим Антона на случайно выбранное место из свободных 33. Теперь помещаем на свободное место Дмитрия (исходом будем считать выбор места для него). Всего имеется 32 свободных места (одно уже занял Антон), поэтому всего возможны 32 исхода. В одной команде с Антоном остается 10 свободных мест, поэтому событию «Антон и Дмитрий в одной команде» благоприятствуют 10 исходов. Вероятность этого события равна .
Ответ: 0,3125.
Задача 13. Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали ходить. Найдите вероятность того, что часовая стрелка застыла, достигнув отметки 11, но не дойдя до отметки 2 часа.
Решение.
Условно циферблат можно разделить на 12 секторов, располагающихся между отметками соседних чисел (между 12 и 1, 1 и 2, 2 и 3, …, 11 и 12). Исходом мы будем считать остановку часовой стрелки в одном из указанных секторов. Всего есть 12 равновозможных исходов. Указанному событию благоприятствуют три исхода (сектора между 11 и 12, 12 и 1, 1 и 2). Искомая вероятность равна .
Ответ: 0,25.
Подведем итог
После изучения материала по решению простых задач по теории вероятностей рекомендую выполнить задачи для самостоятельного решения, которые мы публикуем на нашем канале Telegram. Вы также можете проверить правильность их выполнения, внеся свои ответы в предлагаемую форму.
Также рекомендую изучить “Округление с недостатком” и другие уроки по решению заданий ЕГЭ по математике, которые представлены на нашем канале Youtube.
Спасибо, что поделились статьей в социальных сетях
Источник “Подготовка к ЕГЭ. Математика.Теория вероятностей”. Под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова
safonova-ln.ru
Теория вероятностей | ЕГЭ по математике (профильной)
Вероятностью события $А$ называется отношение числа благоприятных для $А$ исходов к числу всех равновозможных исходов
$P(A)={m}/{n}$, где $n$ – общее количество возможных исходов, а $m$ – количество исходов, благоприятствующих событию $А$.
Вероятность события — это число из отрезка $[0; 1]$
В фирме такси в наличии $50$ легковых автомобилей. $35$ из них чёрные, остальные — жёлтые. Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета.
Решение:
Найдем количество желтых автомобилей:
$50-35=15$
Всего имеется $50$ автомобилей, то есть на вызов приедет одна из пятидесяти. Желтых автомобилей $15$, следовательно, вероятность приезда именно желтого автомобиля равна ${15}/{50}={3}/{10}=0,3$
Ответ:$0,3$
Противоположные события
Два события называются противоположными, если в данном испытании они несовместимы и одно из них обязательно происходит. Вероятности противоположных событий в сумме дают 1.Событие, противоположное событию $А$, записывают ${(А)}↖{-}$.
$Р(А)+Р{(А)}↖{-}=1$
Независимые события
Два события $А$ и $В$ называются независимыми, если вероятность появления каждого из них не зависит от того, появилось другое событие или нет. В противном случае события называются зависимыми.
Вероятность произведения двух независимых событий $A$ и $B$ равна произведению этих вероятностей:
$Р(А·В)=Р(А)·Р(В)$
Иван Иванович купил два различных лотерейных билета. Вероятность того, что выиграет первый лотерейный билет, равна $0,15$. Вероятность того, что выиграет второй лотерейный билет, равна $0,12$. Иван Иванович участвует в обоих розыгрышах. Считая, что розыгрыши проводятся независимо друг от друга, найдите вероятность того, что Иван Иванович выиграет в обоих розыгрышах.
Решения:
Вероятность $Р(А)$ — выиграет первый билет.
Вероятность $Р(В)$ — выиграет второй билет.
События $А$ и $В$ – это независимые события. То есть, чтобы найти вероятность того, что они произойдут оба события, нужно найти произведение вероятностей
$Р(А·В)=Р(А)·Р(В)$
$Р=0,15·0,12=0,018$
Ответ: $0,018$
Несовместные события
Два события $А$ и $В$ называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию $А$, так и событию $В$. (События, которые не могут произойти одновременно)
Вероятность суммы двух несовместных событий $A$ и $B$ равна сумме вероятностей этих событий:
$Р(А+В)=Р(А)+Р(В)$
На экзамене по алгебре школьнику достается один вопрос их всех экзаменационных. Вероятность того, что это вопрос на тему «Квадратные уравнения», равна $0,3$. Вероятность того, что это вопрос на тему «Иррациональные уравнения», равна $0,18$. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Решение:
Данные события называются несовместные, так как школьнику достанется вопрос ЛИБО по теме «Квадратные уравнения», ЛИБО по теме «Иррациональные уравнения». Одновременно темы не могут попасться. Вероятность суммы двух несовместных событий $A$ и $B$ равна сумме вероятностей этих событий:
$Р(А+В)=Р(А)+Р(В)$
$Р = 0,3+0,18=0,48$
Ответ: $0,48$
Совместные события
Два события называются совместными, если появление одного из них не исключает появление другого в одном и том же испытании. В противном случае события называются несовместными.
Вероятность суммы двух совместных событий $A$ и $B$ равна сумме вероятностей этих событий минус вероятность их произведения:
$Р(А+В)=Р(А)+Р(В)-Р(А·В)$
В холле кинотеатра два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна $0,6$. Вероятность того, что кофе закончится в обоих автоматах, равна $0,32$. Найдите вероятность того, что к концу дня кофе закончится хотя бы в одном из автоматов.
Решение:
Обозначим события, пусть:
$А$ = кофе закончится в первом автомате,
$В$ = кофе закончится во втором автомате.
Тогда,
$A·B =$ кофе закончится в обоих автоматах,
$A + B =$ кофе закончится хотя бы в одном автомате.
По условию, $P(A) = P(B) = 0,6; P(A·B) = 0,32$.
События $A$ и $B$ совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения:
$P(A + B) = P(A) + P(B) − P(A·B) = 0,6 + 0,6 − 0,32 = 0,88$
Ответ: $0,88$
examer.ru