Задания по профильной математике ЕГЭ с разбором решений
Задания по профильной математике ЕГЭ с разбором решенийЗадание № 2 —является одним из простейших заданий экзамена. С ней успешно справляется большинство выпускников, что свидетельствует о владении определением понятия функции. Тип задания № 2 по кодификатору требований — это задание на использования приобретённых знаний и умений в практической деятельности и повседневной жизни. Задание № 2 состоит из описания с помощью функций различных реальных зависимостей между величинами и интерпретация их графиков. Задание № 2 проверяет умение извлекать информацию, представленную в таблицах, на диаграммах, графиках. Выпускникам нужно уметь определять значение функции по значению аргумента при различных способах задания функции и описывать поведение и свойства функции по её графику. Также необходимо уметь находить по графику функции наибольшее или наименьшее значение и строить графики изученных функций. Допускаемые ошибки носят случайный характер в чтении условия задачи, чтении диаграммы.
Задание № 2 проверяет умение читать диаграммы.
Пример 2. На рисунке показано изменение биржевой стоимости одной акции добывающей компании в первой половине апреля 2017 года. 7 апреля бизнесмен приобрёл 1000 акций этой компании. 10 апреля он продал три четверти купленных акций, а 13 апреля продал все оставшиеся. Сколько потерял бизнесмен в результате этих операций?
Решение:
1) 340 · 1000 = 340000 (руб) — бизнесмен потратил 7 апреля при покупке 1000 акций.
2) 1000 · 3/4 = 750 (акций) — составляют 3/4 от всех купленных акций.
3) 330 · 750 = 247500 (руб) — бизнесмен получил 10 апреля после продажи 750 акций.
4) 1000 – 750 = 250 (акций) — остались после продажи 750 акций 10 апреля.
5) 310 · 250 = 77500 (руб) — бизнесмен получил 13 апреля после продажи 250 акций.
6) 247500 + 77500 = 325000 (руб) — бизнесмен получил после продажи 1000 акций.
7) 340000 – 325000 = 15000 (руб) — потерял бизнесмен в результате всех операций.
Ответ: 15000.
Задание № 3 — является заданием базового уровня первой части, проверяет умения выполнять действия с геометрическими фигурами по содержанию курса «Планиметрия». В задании 3 проверяется умение вычислять площадь фигуры на клетчатой бумаге, умение вычислять градусные меры углов, вычислять периметры и т.п.
Пример 3. Найдите площадь прямоугольника, изображенного на клетчатой бумаге с размером клетки 1 см на 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
Решение: Для вычисления площади данной фигуры можно воспользоваться формулой Пика:
На рисунке справа B = 7 (красные точки), Г = 8 (зелёные точки),
где В = 10, Г = 6, поэтому
|
Читайте также: ЕГЭ по физике: решение задач о колебаниях
Задание № 4 — задача курса «Теория вероятностей и статистика». Проверяется умение вычислять вероятность события в простейшей ситуации.
Пример 4. На окружности отмечены 5 красных и 1 синяя точка. Определите, каких многоугольников больше: тех, у которых все вершины красные, или тех, у которых одна из вершин синяя. В ответе укажите, на сколько одних больше, чем других.
Решение: 1) Воспользуемся формулой числа сочетаний из n элементов по k:
= | n! | . |
k!(n – k)! |
= | 5! | = | 3! · 4 · 5 | = | 4 · 5 | = 10 треугольников, |
3!(5 – 3)! | 3!2! | 1 · 2 |
у которых все вершины красные.
2)
= | 5! | = | 4! · 5 | = 5 треугольников, |
4!(5 – 4)! | 4!1! |
у которых все вершины красные.
3) Один пятиугольник, у которого все вершины красные.
4) 10 + 5 + 1 = 16 многоугольников, у которых все вершины красные.
5)
= | 6! | = | 3! · 4 · 5 · 6 | = | 4 · 5 · 6 | = 20 треугольников, |
3!(6 – 3)! | 3!3! | 1 · 2 · 3 |
у которых вершины красные или с одной синей вершиной.
6)
= | 6! | = | 4! · 5 · 6 | = | 5 · 6 | = 15 четырёхуголников, |
4!(6 – 4)! | 4!2! | 1 · 2 |
у которых вершины красные или с одной синей вершиной.
7)
= | 6! | = | 5! · 6 | = 6 пятиугольников, |
5!(6 – 5)! | 5!1! |
у которых вершины красные или с одной синей вершиной.
8) Один шестиуголник, у которого вершины красные с одной синей вершиной.
9) 20 + 15 + 6 + 1 = 42 многоуголника, у которых все вершины красные или с одной синей вершиной.
10) 42 – 16 = 26 многоугольников, в которых используется синяя точка.
11) 26 – 16 = 10 многоугольников – на сколько многоугольников, у которых одна из вершин — синяя точка, больше, чем многоугольников, у которых все вершины только красные.
Ответ: 10.
Задание № 5 — базового уровня первой части проверяет умения решать простейшие уравнения (иррациональные, показательные, тригонометрические, логарифмические).
Пример 5. Решите уравнение 23 + x = 0,4 · 53 + x.
Решение. Разделим обе части данного уравнения на 5
23 + x | = 0,4 или | 2 | 3 + х | = | 2 | , | ||
53 + х | 5 | 5 |
откуда следует, что 3 + x = 1, x = –2.
Ответ: –2.
Задание № 6 по планиметрии на нахождение геометрических величин (длин, углов, площадей), моделирование реальных ситуаций на языке геометрии. Исследование построенных моделей с использованием геометрических понятий и теорем. Источником трудностей является, как правило, незнание или неверное применение необходимых теорем планиметрии.
Пример 6. Площадь треугольника ABC равна 129. DE – средняя линия, параллельная стороне AB. Найдите площадь трапеции ABED.
Решение. Треугольник CDE подобен треугольнику CAB по двум углам, так как угол при вершине C общий, угол СDE равен углу CAB как соответственные углы при DE || AB секущей AC. Так как DE – средняя линия треугольника по условию, то по свойству средней линии | DE = (1/2)AB. Значит, коэффициент подобия равен 0,5. Площади подобных фигур относятся как квадрат коэффициента подобия, поэтому
SΔCDE | = | | 2 | | 2 | ; SΔCDE = | 1 | · 129 = 32,25. |
SΔCAB | 5 | 4 |
Следовательно, SABED = SΔABC – SΔCDE = 129 – 32,25 = 96,75.
Ответ: 96,75.
Смотреть вебинары по алгебре
Задание № 7 — проверяет применение производной к исследованию функции. Для успешного выполнения необходимо содержательное, не формальное владение понятием производной.
Пример 7. К графику функции y = f(x) в точке с абсциссой x0 проведена касательная, которая перпендикулярна прямой, проходящей через точки (4; 3) и (3; –1) этого графика. Найдите f′(x0).
Решение. 1) Воспользуемся уравнением прямой, проходящей через две заданные точки и найдём уравнение прямой, проходящей через точки (4; 3) и (3; –1).
(y – y1)(x2 – x1) = (x
– x1)(y2 – y1)(y – 3)(3 – 4) = (x – 4)(–1 – 3)
(y – 3)(–1) = (x – 4)(–4)
–y + 3 = –4x + 16| · (–1)
y – 3 = 4x – 16
y = 4x – 13, где k1 = 4.
2) Найдём угловой коэффициент касательной k2, которая перпендикулярна прямой y = 4x – 13, где k1 = 4, по формуле:
k1 · k2 = –1, k2 = | –1 | –0,25. |
4 |
3) Угловой коэффициент касательной – производная функции в точке касания. Значит, f′(x0) = k2 = –0,25.
Ответ: –0,25.
Задание № 8 — проверяет у участников экзамена знания по элементарной стереометрии, умение применять формулы нахождения площадей поверхностей и объемов фигур, двугранных углов, сравнивать объемы подобных фигур, уметь выполнять действия с геометрическими фигурами, координатами и векторами и т.п.
Пример 8. Объём куба, описанного около сферы, равен 216. Найдите радиус сферы.
Решение. 1) Vкуба = a3 (где а – длина ребра куба), поэтому
а3 = 216
а = 3√216
a = 6.
2) Так как сфера вписана в куб, значит, длина диаметра сферы равна длине ребра куба, поэтому d = a, d = 6, d = 2R, R = 6 : 2 = 3.
Ответ: 3.
Приемы подготовки к профильному ЕГЭ по математике
Задание № 9 — требует от выпускника навыков преобразования и упрощения алгебраических выражений. Задание № 9 повышенного уровня сложности с кратким ответом. Задания из раздела «Вычисления и преобразования» в ЕГЭ подразделяются на несколько видов:
преобразования числовых рациональных выражений;
преобразования алгебраических выражений и дробей;
преобразования числовых/буквенных иррациональных выражений;
действия со степенями;
преобразование логарифмических выражений;
- преобразования числовых/буквенных тригонометрических выражений.
Пример 9. Вычислите tgα, если известно, что cos2α = 0,6 и
Решение. 1) Воспользуемся формулой двойного аргумента: cos2α = 2 cos2α – 1 и найдём
cos2α = | cos2α + 1 | = | 0,6 + 1 | = | 1,6 | = 0,8. |
2 | 2 | 2 |
2) Воспользуемся формулой тригонометрических функций одного угла:
и найдём
tg2α = | 1 | – 1 = | 1 | – 1 = | 10 | – 1 = | 5 | – 1 = 1 | 1 | – 1 = | 1 | = 0,25. |
cos2α | 0,8 | 8 | 4 | 4 | 4 |
Значит, tg2α = ± 0,5.
3) По условию
значит, α – угол II четверти и tgα < 0, поэтому tgα = –0,5.
Ответ: –0,5.
Задание № 10 — проверяет у учащихся умение использовать приобретенные раннее знания и умения в практической деятельности и повседневной жизни. Можно сказать, что это задачи по физике, а не по математике, но все необходимые формулы и величины даны в условии. Задачи сводятся к решению линейного или квадратного уравнения, либо линейного или квадратного неравенства. Поэтому необходимо уметь решать такие уравнения и неравенства, и определять ответ. Ответ должен получиться в виде целого числа или конечной десятичной дроби.
Пример 10. Два тела массой m = 2 кг каждое, движутся с одинаковой скоростью v = 10 м/с под углом 2α друг к другу. Энергия (в джоулях), выделяющаяся при их абсолютно неупругом соударении определяется выражением Q = mv2sin2α. Под каким наименьшим углом 2α (в градусах) должны двигаться тела, чтобы в результате соударения выделилось не менее 50 джоулей?
Решение. Для решения задачи нам необходимо решить неравенство Q ≥ 50, на интервале 2α ∈ (0°; 180°).
mv2sin2α ≥ 50
2· 102sin2α ≥ 50
200 · sin2α ≥ 50
Решением данного неравенства являются два неравенства:
sinα ≥ | 1 | и sinα ≤ – | 1 | . |
2 | 2 |
Так как α ∈ (0°; 90°), то будем решать только
Неравенство
мы не рассматриваем, так как α для него будет более 180°. Итак:
Изобразим ре
rosuchebnik.ru
ЕГЭ
Задачи ЕГЭ по математике
На этой странице вы можете ознакомиться с задачами из части «В» Единого государственного экзамена. Открыв какое-либо задание (В1, или В2, или В3 и т.д.), вы увидите сразу несколько условий задач, соответствующих этому типу задания ЕГЭ. Их можно решать в любом порядке и в течение любого времени.
Решив задачу, можно проверить себя, щёлкнув по ссылке «Показать ответ». Если решение не получилось – всегда можно посмотреть наш вариант, пройдя по ссылке «Показать решение». Свои комментарии можно оставить в «Обсуждении задачи».
Наш раздел ориентирован в первую очередь не на педагогов, а на самих учеников. Именно для них написаны подробные решения. Яркие, красочные рисунки, многочисленные пометки и пояснения, в том числе раскрывающие, как надо думать на том или ином этапе, – вот то, что отличает их от большинства пояснений и комментариев к заданиям ЕГЭ, представленных в Интернете. Думайте, решайте, наслаждайтесь красотой решения задач вместе с нами!
- B1 Целые, рациональные и дробные числа
- B2 Проценты
- B3 Графическое представление данных. Анализ данных
- B4 Табличное представление данных. Прикладные задачи на нахождение наибольшего и наименьшего значения
- B5 Площадь треугольника, параллелограмма, трапеции, круга, сектора. Декартовы координаты на плоскости
- B6 Элементы теории вероятностей
- B7 Уравнения
- B8 Планиметрия. Треугольник, трапеция, параллелограмм, ромб, прямоугольник, квадрат. Окружность и круг. Угол. Нахождение элементов и величин в различных геометрических фигурах
- B9 Графики функции, производных функций. Исследование функций
- B10 Многогранники. Измерение геометрических величин
- B11 Числа, корни и степени. Основы тригонометрии. Логарифмы. Преобразования выражений
- B12 Прикладные задачи. Осуществление практических расчетов по формулам
- B13 Многогранники. Тела вращения. Прямые и плоскости в пространстве. Измерение геометрических величин
- B14 Составление уравнений и неравенств по условию задач. Их решение
- B15 Исследование функций. Применение производной функции
- 1 Квадратный корень
- 2 Линейные уравнения
- 3 Неполные квадратные уравнения
- 4 Полные квадратные уравнения
- 5 Теорема Виета
- 6 Дробные рациональные уравнения
- 7 Уравнения высоких степеней
- 8 Числовые неравенства и их свойства
- 9 Неравенства с одной переменной
- 10 Системы неравенств
- 11 Совокупности неравенств
- 12 Расщепление неравенств
- 13 Неравенства с модулями
- 14 Разные неравенства
- 15 Неравенства второй степени. Рациональные неравенства
- 16 Степень с целым показателем
- 17 Область определения и область значений функции
- 18 Свойства функций: монотонность, чётность, нечётность
- 19 Обратные функции
- 20 Построение графиков функций
- 21 Системы линейных уравнений и системы, сводящиеся к ним
- 22 Нелинейные системы уравнений. Метод подстановки и алгебраического сложения
- 23 Нелинейные системы уравнений. Метод почленного умножения и деления уравнений системы
- 24 Нелинейные системы уравнений. Замена неизвестной. Симметрические системы
- 25 Нелинейные системы уравнений. Системы однородных уравнений и приводящиеся к ним системы
- 26 Системы уравнений с тремя неизвестными
- 27 Разные системы
- 28 Корень n-ой степени
- 29 Степень с рациональным показателем
- 30 Иррациональные уравнения
- 31 Иррациональные неравенства
- 32 Числовые последовательности
- 33 Арифметическая прогрессия
- 34 Геометрическая прогрессия
- 35 Комбинированные задачи на арифметическую и геометрическую прогрессии
- 36 Бесконечная геометрическая прогрессия
- 37 Простейшие текстовые задачи
- 38 Задачи на проценты
- 39 Задачи на целые числа
- 40 Задачи на смеси и сплавы
- 41 Задачи на движение
- 42 Задачи на работу
- 43 Понятие угла LIGHT
- 44 Радианная мера угла LIGHT
- 45 Определение синуса и косинуса угла LIGHT
- 46 Основные формулы для синуса и косинуса угла LIGHT
- 47 Тангенс и котангенс угла LIGHT
- 48 Основные задачи тригонометрии LIGHT
- 49 Зависимость между функциями одного аргумента. Формулы приведения LIGHT
- 50 Тригонометрический круг
- 51 Определение синуса, косинуса, тангенса и котангенса. Радианная мера угла
- 52 Зависимость между функциями одного аргумента. Формулы приведения
- 53 Теоремы сложения
- 54 Формулы двойного и половинного аргумента
- 55 Преобразование суммы тригонометрических функций в произведение и обратно
© 2017-2018 Математушка
www.matematushka.ru
Единый государственный экзамен по математике. Решения.
РЕШЕНИЯ ЕГЭ ПО МАТЕМАТИКЕ — 2013на нашем сайте
Копирование решений на другие сайты запрещено.
Вы можете поставить ссылку на эту страницу.
Наша система тестирования и подготовки к экзамену РЕШУ ЕГЭ РФ.
Наши справочные материалы для подготовки к экзамену.
Внимание! Мы не стремились привести самые короткие или самые красивые решения: каждый имеет право решать задачу так, как ему проще: одним удобнее за несколько минут заполнить страницу выкладками, другие предпочитают подумать, но получить короткое решение. Для аналогичных задач мы старались различные решения. Среди 2400 приведенных решений есть, конечно, и решения с опечатками. Заметите — сообщайте. Удачи!
C 2001 по 2009 год в России начался эксперимент по объединению выпускных экзаменов из школ со вступительными экзаменами в высшие учебные заведения. В 2009 году этот эксперимент был закончен, и с тех пор единый государственный экзамен стал основной формой контроля школьной подготовки.
В 2010 году на смену старой команде составителей экзамена пришла новая. Вместе с разработчиками изменилась и структура экзамена: уменьшилось число задач, увеличилось количество геометрических задач, появилась задача олимпиадного типа.
Важным нововведением стала подготовка открытого банка экзаменационных заданий, в котором разработчики разместили около 75 тысяч заданий. Решить эту бездну задач никто не в силах, но это и не нужно. В действительности, основные типы заданий, представлены так называемыми прототипами, их примеро 2400 штук. Все остальные задачи получены из них при помощи компьютерного клонирования; они отличаются от прототипов только конкретными числовыми данными.
Продолжая наши традиции мы представляем вашему вниманию решения всех прототипов экзаменационных заданий, существующих в открытом банке. После каждого прототипа приводится список составленных на его основе задач-клонов для самостоятельных упражнений.
www.mathnet.spb.ru