Закон ома в каком классе проходят: В каком классе изучают закон Ома и для чего?

Содержание

В каком классе изучают закон ома – Закон Ома для участка цепи | Физика. Закон, ГДЗ, доклад, конспект, кратко, лекция, решебник, формула, шпаргалка, шпора

Конспект “Закон Ома. Соединение проводников”

«Закон Ома. Соединение проводников»



В предыдущем конспекте «Электрическое сопротивление» был установлено, что сила тока в проводнике зависит от напряжения на его концах. Если в опыте менять проводники, оставляя напряжение на них неизменным, то можно показать, что при постоянном напряжении на концах проводника сила тока обратно пропорциональна его сопротивлению. Объединив зависимость силы тока от напряжения и его зависимость от сопротивления проводника, можно записать: I = U/R. Этот закон, установленный экспериментально, называется закон Ома (для участка цепи).

Закон Ома для участка цепи: сила тока в проводнике прямо пропорциональна приложенному к его концам напряжению и обратно пропорциональна сопротивлению проводника.  Прежде всего закон всегда верен для твёрдых и жидких металлических проводников. А также для некоторых других веществ (как правило, твёрдых или жидких).

Потребители электрической энергии (лампочки, резисторы и пр.) могут по-разному соединяться друг с другом в электрической цепи. Два основных типа соединения проводников: последовательное и параллельное. А также есть еще два соединения, которые являются редкими: смешанное и мостовое.

Последовательное соединение проводников

При последовательном соединении проводников конец одного проводника соединится с началом другого проводника, а его конец — с началом третьего и т.д. Например, соединение электрических лампочек в ёлочной гирлянде.  При последовательном соединении проводников ток проходит через все лампочки. При этом через поперечное сечение каждого проводника в единицу времени проходит одинаковый заряд. То есть заряд не скапливается ни в какой части проводника.

Поэтому при последовательном соединении проводников сила тока в любом участке цепи одинакова: I1 = I2 = I.

Общее сопротивление последовательно соединённых проводников равно сумме их сопротивлений: R1 + R2 = R. Потому что при последовательном соединении проводников их общая длина увеличивается. Она больше, чем длина каждого отдельного проводника, соответственно увеличивается и сопротивление проводников.

По закону Ома напряжение на каждом проводнике равно: U1 = I*R1, U2 = I*R2. В таком случае общее напряжение равно U = I (R1 + R2). Поскольку сила тока во всех проводниках одинакова, а общее сопротивление равно сумме сопротивлений проводников, то

полное напряжение на последовательно соединённых проводниках равно сумме напряжений на каждом проводнике: U = U1 + U2.

Из приведённых равенств следует, что последовательное соединение проводников используется в том случае, если напряжение, на которое рассчитаны потребители электрической энергии, меньше общего напряжения в цепи.

Для последовательного соединения проводников справедливы законы

1) сила тока во всех проводниках одинакова; 2) напряжение на всём соединении равно сумме напряжений на отдельных проводниках; 3) сопротивление всего соединения равно сумме сопротивлений отдельных проводников.

Параллельное соединение проводников

Примером параллельного соединения проводников служит соединение потребителей электрической энергии в квартире. Так, электрические лампочки, чайник, утюг и пр. включаются параллельно.

При параллельном соединении проводников все проводники одним своим концом присоединяются к одной точке цепи. А вторым концом к другой точке цепи. Вольтметр, подключенный к этим точкам, покажет напряжение и на проводнике 1, и на проводнике 2. В таком случае напряжение на концах всех параллельно соединённых проводников одно и то же: U1 = U2 = U.

При параллельном соединении проводников электрическая цепь разветвляется. Поэтому часть общего заряда проходит через один проводник, а часть — через другой. Следовательно при параллельном соединении проводников сила тока в неразветвлённой части цепи равна сумме силы тока в отдельных проводниках: I = I1 + I2.

В соответствии с законом Ома   

I = U/R,   I1 = U1/R1,   I2 = U2/R2. Отсюда следует: U/R = U1/R1 + U2/R2, U = U1 = U2,  1/R = 1/R1 + 1/R2  Величина, обратная общему сопротивлению параллельно соединенных проводников, равна сумме величин, обратных сопротивлению каждого проводника.

При параллельном соединении проводников их общее сопротивление меньше, чем сопротивление каждого проводника. Действительно, если параллельно соединены два проводника, имеющие одинаковое сопротивление г, то их общее сопротивление равно: R = г/2. Это объясняется тем, что при параллельном соединении проводников как бы увеличивается площадь их поперечного сечения. В результате уменьшается сопротивление.

Из приведённых формул понятно, почему потребители электрической энергии включаются параллельно. Они все рассчитаны на определённое одинаковое напряжение, которое в квартирах равно 220 В. Зная сопротивление каждого потребителя, можно рассчитать силу тока в каждом из них. А также соответствие суммарной силы тока предельно допустимой силе тока.

Для параллельного соединения проводников справедливы законы:

1) напряжение на всех проводниках одинаково; 2) сила тока в месте соединения проводников равна сумме токов в отдельных проводниках; 3) величина, обратная сопротивлению всего соединения, равна сумме величин, обратных сопротивлениям отдельных проводников.

Смешанное соединение проводников

Смешанное соединение – соединение, которое является совокупностью последовательных и параллельных соединений. Для нахождения эквивалентного сопротивления нужно, “свернуть” схему поочередным преобразованием параллельных и последовательных участков цепи.

Существует и 4-й вид соединения проводников — мостовое, которое является самым сложным.

 


Конспект урока «Закон Ома. Соединение проводников».

Следующая тема: «Работа и мощность электрического тока».

 

Закон Ома. Соединение проводников

5 (100%) 1 vote

uchitel.pro

Урок физики в 8-м классе по теме «Работа электрического тока»

Урок разработан и проведён по программе, учебнику А.В. Перышкина и Н.А. Родиной в технологии, органично сочетающей в себе достоинства личностно-ориентированного обучения и практической направленности, что позволяет:

  • построить структуру урока, основываясь на социальном и прошлом учебном опыте учащихся;
  • грамотно выстроить цепочку мотивации учебного труд;
  • дать возможность на личностном уровне погрузиться в мир новых знаний и проявить себя каждому учащемуся;
  • направить на личность ребёнка, создание атмосферы сотворчества детей, детей и педагога, детей и “учебного материала”.

Урок структурно выдержан по методам формам и приёмам работы – развивающий, способствующий активному участию каждого ученика в получении ЗУНов, а наиболее способным для достижений более сложных целей – формирования УМов (убеждений, мнений), позволяющий открыть дорогу к самостоятельному познанию.
Это создаёт своего рода творческое состояние учащихся на уроке, способствует аргументированным действиям и рассуждениям детей.
Со стороны учителя господствуют субъект-субъектные отношения, что раскрепощает детей, раскрывает простор творчеству, фантазии. Для каждого ученика становятся ясным его достижения и его пробелы.

Учитель группирует для себя проблемы, над которыми нужно работать с каждым учащимся индивидуально. Урок имеет целостное восприятие, демонстрирует ранее приобретённые знания, умения, навыки школьников, отражает развитие их способностей к самооценке. Несёт хороший заряд воспитательного воздействия – мотивированного учебного труда с анализом его составляющих, выводами.

Тема: Работа электрического тока.

Цели:

  • ввести понятие работы электрического тока;
  • развитие практических навыков работы с физическими приборами;
  • воспитание исследовательских навыков и качеств личности.

Оборудование: демонстрационные вольтметр, амперметр, вольтметр, источник питания, линейка, фотоэлемент, реостат, ключ, соединительные провода.

Понятия: электрический ток.

Тип урока: изучение нового материала.

ХОД УРОКА

I. Изучение нового материала.

1). Повторение физических величин изученных на предыдущих уроках.

Учитель. На предыдущих уроках мы занимались изучением различных электрических явлений, познакомились с важными физическими величинами, без которой невозможно изучение новой темы. Напомните, о какой физической величине шла речь?

Ученик. Сила тока, напряжение, сопротивление.

Учитель: Мы также познакомились и с основными физическими законами, связанными с прохождением тока по проводникам. Какие это законы?

Ученик. Закон Ома, законы распределения тока и напряжения при параллельном и последовательном соединении проводников.

2) Механическая работ а.

Учитель. Сегодня на уроке мы продолжим изучение электрических явлений. Вначале попытаемся вспомнить то, что вы хорошо уже знаете и что поможет вам понять новую тему. Давайте проведем небольшой эксперимент. Соедините ладони, и быстро потрите их друг о друга. Что, вы, почувствовали?

Ученик. Они нагрелись за счет силы трения. Наши ладони перемещались друг относительно друга, а значит, совершали работу. Затраченная работа равна произведению силы трения на перемещение.

Учитель. А совершалась ли работа, когда вы писали ручкой?

Ученик. Да, она совершалась мускульной силой руки.

Учитель. Итак, в обоих случаях была совершена работа, так как наличествует сила и перемещение. С понятием работы вы уже неоднократно сталкивались в обыденной жизни. Этим словом мы называем всякий полезный труд рабочего, инженера, врача, учителя. Ваша работа – это тоже работа. Но в физике понятие работа несколько иное. Работа – это определенная физическая величина. Давайте проведем еще один простой опыт.
Шарик падает с высоты ____ до высоты ____ (условно считаем эту высоту нулевой) Будет ли совершена в этом случае работа?

Ученик. Работа будет совершена, так как на шарик действует сила тяжести и под действием этой силы он совершает перемещение.

Учитель. А как рассчитать эту работу?

Ученик. По формуле A = mgh

(На доске таблицы)

Учитель. А что такое h в этой формуле? Ведь это путь, пройденный шариком, следовательно, он равен разности начальной и конечной высот
h = h1 – h2. Поэтому мы можем записать: A = mgh1 – mgh2

Если mgh = П – потенциальная энергия тела на высоте h, то совершенная работа равна изменению потенциальной энергии тела. А что произошло с полной механической энергией тела?

Ученик. Она не изменилась. Сумма кинетической и потенциальной энергии тела на высоте h3 равна этой сумме на высоте h2.

Таким образом, энергия перешла из одного вида в другой.

3). Изменение и превращение энергии при электрических явлениях.

Учитель. Теперь мы сможем сделать с вами вывод о том, что работа характеризует изменение энергии и превращение одного вида энергии в другой. Давайте обсудим, может ли происходить изменение и превращение энергии при электрических явлениях. Обратимся к опытам, которые я вам сейчас покажу, а вы будете мне помогать. Посмотрите на доску. На ней висит табличка, где указаны лишь некоторые примеры тех превращений энергии, которые могут происходить при электрических явлениях. Выбирая правильный ответ и поднимая сигнальную карточку с номером (их пять у каждого из вас), вы будете отвечать мне на вопрос о том, какие превращения энергии вы наблюдали в том или ином опыте.

Взаимопревращения видов энергии

  1. Электрическая в механическую.
  2. Электрическая в электромагнитную.
  3. Тепловая в электрическую.
  4. Световая в электрическую.
  5. Электрическая в звуковую.

Демонстрация

а) действие фотоэлемента;
б) действие термопары;
в) работу электромиксера;
г) действие электромагнита;

Учитель. При электрических явлениях могут происходить различные превращения одного вида энергии в другой.Какой вывод можно сделать из этого?

Ученик. Раз происходит превращение одного вида энергии в другой, то совершается работа.

Учитель. В электрической цепи мерой превращения электрической энергии является работа электрического тока.

4). За счет чего совершается работа электрического тока?

Ученик. Она совершается за счет энергии электрического тока.

Учитель. – Что такое электрический ток?
– Что необходимо, чтобы создать ток в проводнике?
– Чем создается электрическое поле?
– Какая сила действует на заряженные частицы в проводнике и приводит их в упорядоченное движение?

Вывод: движение электронов вызывается действием силы электрического поля следовательно, сила электрического поля совершает работу.

5). От чего зависит значение работы электрического тока?

СХЕМА ОПЫТА

Чем ярче горит лампочка, тем больше выделяется энергии, а значит, совершается большая работа электрическим током. Этому случаю соответствует большее значение силы тока и больше значение напряжения. Значит, работа зависит от силы тока и напряжения.
Как вы думаете, в каком случае будет выделяться больше тепла: когда лампочка горит длительное время или горит долго?

Ученик. Чем дольше горит лампочка, тем больше выделяется тепла.

Учитель. Верно. Значит, от какой еще величины зависит работа электрического тока?

Ученик. От времени. Чем дольше горит лампочка, тем большая работа будет совершена.

Учитель. Значит, есть еще величина, от которой зависит работа электрического тока – это время. Мы можем записать формулу, по которой рассчитывается работа:

А = U I t

(А) = 1 Дж = 1 А х 1 В х 1 С

6). Получение формулы работы электрического тока из определения напряжения.

Учитель. Можно ли получить эту формулу из известного вам определения напряжения?

(Работа по учебнику А.В. Перышкина, Н.А. Родина).

Посмотрите на рисунки 7, 8 стр. 80. Что в них общего и чем они отличаются?

Ученик. Сила тока одинакова, но лампочки светятся по-разному, так как одна из них питается от сети, а другая от источника постоянного напряжения. Поэтому при одинаковой силе тока на участках цепи, где включена лампочка, при перемещение одного и того же электрического заряда, равно 1 Кл , работа электрического тока различна, так как в цепях разное напряжение. Если напряжение равно 4 В, то заряд в 1 Кл, пройдя от точки А до точки Б, совершит работу 4 Дж, а при напряжении 220 В совершенная работа равна 220 Дж.

Учитель. Что такое напряжение?

Ученик. Это отношение работы тока на данном участке цепи к электрическому заряду, проходящему по этому участку: U=A/q

Учитель. Пользуясь этим определением, мы можем получить формулу для работы. Ведь заряд, прошедший по участку цепи за время t, по определению, равен произведению силы тока на время: q=I t следовательно, A=Uq=UIt

II Закрепление материала.

1). Решение задач.

Гр. А “делай с нами».

Задача.

Рассчитать, какую работу совершает электрический ток в электродвигателе вентилятора за 30 сек., если при напряжении 220 В сила тока в двигателе равна 0,1 А?

(решается у доски)

Дано: U = 220 В,
I = 0,1 А,
t = 30 с.
А = ?

Решение:
А =U I t,
А = 220 Вх0,1 Ах30 с. = =660 Дж

Ответ: А = 660 Дж

Гр. В “делай как мы”.

Задача.

Какую работу совершает электродвигатель за 1 час, если сила тока в цепи равна 5 А, напряжение на клеммах 220 В и КПД двигателя 80%?

(следует устный разбор)

Дано: t = 1 ч. = 3600 с.,
I = 5 А,
U = 220 В,
КПД = 80%
А = ?

Решение:

А затр. = U I t
А = 220 В х 3600 с. = 3960000 В х А х С = 4 000 000 Дж х 80% : 100 %
А полезн. = 4 000 000 Дж х 80 % : 100 % = 3,2 х 10 3 Дж.

Гр. С “делай лучше нас”.

Задача.

Два проводника сопротивлением по 5 Ом каждый соединены сначала последовательно, а потом параллельно и в обоих случаях включены под напряжение 4,5 В. В каком случае работа тока за одно и то же время будет больше и во сколько раз?

Учитель. Итак, мы научились вычислять работу. А какие приборы нужны, чтобы ее измерить?

Ученик. Амперметр, вольтметр, часы.

Учитель. Как они включаются в цепь?

Ученик. Амперметр – последовательно, вольтметр – параллельно. При включении приборов необходимо соблюдать полярность.

III. Итог урока.

  • Какую новую физическую величину мы с вами рассмотрели на уроке?
  • От чего зависит работа электрического тока?
  • В каких единицах она измеряется?
  • Какими приборами измеряется работа электрического тока?

IV. Домашнее задание.

Параграф 50 (задачи: для гр. “А” № 6, гр. “В” № 15, гр. “С” № 20).

Урок 29. закон ома для участка цепи. соединения проводников — Физика — 10 класс

Физика, 10 класс

Урок 29. Закон Ома для участка цепи. Соединения проводников

Перечень вопросов, рассматриваемых на уроке:

  1. условия, необходимые для существования электрического тока;
  2. постоянный электрический ток;
  3. закон Ома для участка цепи;
  4. формула расчета сопротивления проводника с учетом свойств материала проводника и его геометрических размеров;
  5. типы соединений проводников и формулы расчета параметров электрической цепи для каждого типа.

Глоссарий по теме.

Сила тока I — скалярная величина, равная отношению заряда q, прошедшего через поперечное сечение проводника, к промежутку времени t, в течение которого шёл ток.

Постоянный ток — электрический ток, не изменяющийся со временем.

Последовательное соединение проводников. При последовательном соединении электрическая цепь не имеет разветвлений. Все проводники включают в цепь поочередно друг за другом.

Параллельное соединение проводников. При параллельном соединении концы проводников присоединены к одной и той же паре точек.

Смешанное соединение проводниковэто такое соединение, когда в цепи присутствует и последовательное, и параллельное соединение.

Узел – это точка электрической цепи, где сходится не менее трех ветвей.

Свойство проводника ограничивать силу тока в цепи, то есть противодействовать электрическому току, называют электрическим сопротивлением проводника.

Резистор или проводник элемент электрических цепей, обладающий определённым или переменным значением электрического сопротивления.

Основная и дополнительная литература по теме урока:

1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 335 – 340.

2. Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа, 2009. – С. 105 – 109.

3. Элементарный учебник физики. Учебное пособие в 3 томах под редакцией академика Ландсберга Г.С.: Т.2. Электричество и магнетизм. – 12-е изд. – М.: ФИЗМАТЛИТ, 2001. С. 110 – 115.

4. Тульчинский М.Е. Качественные задачи по физике в средней школе. Пособие для учителей. Изд. 4-е, переработ. и доп. М. «Просвещение», 1972. С. 83 – 87.

5. Савельев И.В. Курс общей физики, том II. Электричество. М.: Изд. «Наука», 1970 г. С. 108.

Открытые электронные ресурсы:

http://kvant.mccme. ru/1979/02/elektrichestvo_ie_temperatura.htm

Теоретический материал для дополнительного изучения

Сложно представить нашу жизнь без электрического тока. Каждый день, не задумываясь, мы используем различные электрические приборы, в основе работы которых лежат простые и сложные электрические цепи. Какому закону подчиняются основные параметры электрических цепей? Как рассчитать эти цепи, чтобы приборы работали исправно?

Вы уже знаете, электрическим током называют упорядоченное (направленное) движение заряженных частиц.

Для возникновения и существования электрического тока в проводнике необходимо:

  1. наличие свободных заряженных частиц;
  2. сила, действующая на них в определённом направлении, то есть наличие электрического поля в проводнике.

Различают следующие действия электрического тока:

  1. тепловое ;
  2. химическое ;
  3. магнитное .

Постоянный ток — электрический ток, у которого сила тока и направление не изменяются со временем.

Сила тока I равна отношению электрического заряда q, прошедшего через поперечное сечение проводника, ко времени его прохождения t:

За направление электрического тока условно выбрано направление движения положительно заряженных частиц, то есть в сторону, противоположную направлению движения электронов.

Для каждого проводника – твердого, жидкого и газообразного – существует определённая зависимость силы тока от приложенной разности потенциалов (напряжения) на концах проводника. Эту зависимость выражает, так называемая, вольт-амперная характеристика проводника.

Для широкого класса проводников (в т. ч. металлов ) при неизменной температуре справедлив закон Ома для участка цепи:

Сила тока на участке цепи прямо пропорциональна приложенному напряжению U и обратно пропорциональна сопротивлению этого участка цепи:

Закон имеет простую форму, но доказать экспериментально его справедливость довольно трудно.

Закон Ома является основой всей электротехники постоянных токов. Из закона Ома вытекает, что замыкать обычную осветительную сеть проводником малого сопротивления опасно.

Основная электрическая характеристика проводника – сопротивление. От этой величины зависит сила тока в проводнике при заданном напряжении. Причиной электрического сопротивления является взаимодействие электронов при их движении по проводнику с ионами кристаллической решетки. Сопротивление проводника зависит от свойств материала проводника и его геометрических размеров.

Электрическое сопротивление металлов прямо пропорционально длине проводника и обратно пропорционально площади его поперечного сечения:

где величина ρ – удельное сопротивление проводника — величина, зависящая от рода вещества и его состояния (от температуры в первую очередь). Удельное сопротивление веществ приводятся в справочных таблицах.

Омметр – прибор для измерения сопротивления.

От источника тока энергия может быть передана по проводам к устройствам, потребляющим энергию. Для этого составляют электрические цепи различной сложности. Различают последовательное, параллельное, смешанное соединения проводников.

Последовательное соединение проводников. При последовательном соединении электрическая цепь не имеет разветвлений. Все проводники включают в цепь поочередно друг за другом. Главная особенность последовательного соединения заключается в том, что через все проводники протекает одинаковый ток. Если через один проводник протекает ток определенной величины, то такой же ток протекает и через все остальные. Если хотя бы в одном проводнике отсутствует ток, то он обязательно отсутствует и во всех остальных. Напряжение на концах последовательно соединенных проводников складывается. Полное сопротивление всего участка цепи при последовательном соединении равно сумме сопротивлений всех проводников.

Последовательное соединение

Физическая величина

Формула

Сила тока

I = I1 = I2

Напряжение

U = U1 + U2

Сопротивление

R = R1 + R2

Параллельное соединение проводников. При параллельном соединении концы проводников присоединены к одной и той же паре точек.

Параллельное соединение

Физическая величина

Формула

Сила тока

I = I1 + I2

Напряжение

U = U1 = U2

Сопротивление

Узел – это точка электрической цепи, где сходится не менее трех ветвей.

Узел обозначается на схеме жирной точкой в том месте, где ветви соединяются между собой.

Смешанное соединение проводников.

Смешанным соединением проводников называют такое соединение, при котором в цепи присутствует и последовательное, и параллельное соединение.

Метод эквивалентных преобразований заключается в том, что электрическую цепь или ее часть заменяют более простой по структуре электрической цепью. При этом токи и напряжения в непреобразованной части цепи должны оставаться неизменными, т.е. такими, какими они были до преобразования. В результате преобразований расчет цепи упрощается и часто сводится к элементарным арифметическим операциям.

Расчет сопротивления сложной цепи:

Рези́стор или проводник — пассивный элемент электрических цепей, обладающий определённым или переменным значением электрического сопротивления.

Примеры и разбор решения заданий

1. Выберите один из 3 вариантов ответа:

При параллельном соединении проводников…

1) напряжение зависит от сопротивления на данном участке цепи

2) напряжение везде разное

3) напряжение везде одинаковое

Ответ: 3) напряжение везде одинаковое.

2. На участке цепи, изображенном на рисунке, сопротивление каждого из резисторов равно 24 Ом. Чему равно полное сопротивление участка при замкнутом ключе К?

Решение.

После замыкания ключа схема будет представлять собой параллельное соединение резистора с двумя последовательно соединенными резисторами.

Полное сопротивление участка при замкнутом ключе равно

(R+R)R/((R+R) + R) = 2R/3 = 16 Ом.

Ответ: 16 Ом.

«Механическая энергия. Закон сохранения механической энергии»

Цели урока

Образовательная:

Развивающая:

  • уметь творчески интерпретировать имеющуюся информацию, обогащать словарный запас учащихся, отрабатывать вычислительные навыки.

Воспитывающая:

  • воспитание доброжелательности, сотрудничества, сотворчества;

  • воспитание профориентационной направленности.

Тип урока: комбинированный.

Продолжительность занятия – 45 минут.

Материалы и оборудование:

План урока:

  1. Организационный момент;

  2. Постановка темы и целей урока;

  3. Проверка домашнего задания;

  4. Изучение нового материала;

  5. Закрепление нового материала;

  6. Подведение итогов урока.

  7. Домашнее задание.

Ход урока:

I. Организационный момент:

1. Приветствие и настрой на урок.

II. Постановка темы и целей урока.

III. Проверка домашнего задания: Фронтальный опрос: Что такое работа? По какой формуле вычисляется работа? В каких единицах измеряется работа? Что характеризует мощность? В каких единицах измеряется мощность? По какой формуле вычисляется мощность?

III. Изучение нового материала:

Мы с вами повторили основные две физические величины это работа и мощность. Следующая физическая величина которую мы будим проходить – это энергия. Итак, мы вводим новое понятие энергия. Как Вы думаете, какова цель нашего сегодняшнего урока. Для чего мы должны изучать энергию?

Какие виды энергии вы знаете? Приведите примеры?

Ребята! Сегодня мы с вами познакомимся с механической энергией. Механическая энергия — физическая величина, показывающая какую работу может совершить тело.

Она обозначается: W

Рассмотрим теперь несколько ситуаций, которые помогут нам ввести понятие «энергия», которое чрезвычайно важно в физике и технике. Им мы будем пользоваться вплоть до 11 класса.

Двое грузчиков работают на стройке. Ребята, а какие Вы знаете строительные профессии, кто хочет стать строителем? Вы знаете, что сейчас много грантов и рабочих мест выделено именно строительным специальностям. Посмотрите на рисунок. Ситуация первая – грузчики поднимают кирпичи на второй этаж. Посмотрите на рисунок. Один из них может носить по десятку кирпичей, а другой – только по два кирпича. У какого рабочего больше энергии? Какой рабочий может выполнить большее количество работы? Обратим внимание, что грузчики совершают над кирпичами механическую работу. Говорят, что у толстячка больше энергии, так как он способен выполнить больше работы. Тем не менее, даже упитанный персонаж не может работать бесконечно – через некоторое время оба грузчика утомятся. Итак, по мере совершения грузчиками работы их способность совершать новую работу (то есть их энергия) уменьшается. Обобщённо мы скажем: при совершении телом работы его собственная энергия уменьшается. Как вы думаете почему? Это означает, что в их мышцах иссякла энергия. После отдыха (или лучше – после принятия пищи и отдыха) мышцы вновь будут способны совершать работу, так как кровь доставляет питательные вещества, за счёт которых энергия пополняется.

Ситуация вторая. Первобытный человек совершает механическую работу над камнем – поднимает его. В отличие от первой ситуации, в качестве рассматриваемого тела выберем теперь не человека, а камень. То есть теперь работу совершает не само тело, а кто-то над телом.  В результате этого энергия тела увеличивается. Теперь камень может, например, упасть и разбить орех, то есть совершить работу, на выполнение которой прежней энергии камня было недостаточно.

Итак, энергия – физическая величина, характеризующая способность тела (или нескольких тел) совершать работу. Поэтому, как и работа энергия измеряется джоулями. Чем больше работы может совершить тело, тем больше его энергия. И наоборот.

Слово «энергия» мы используем очень часто. Так, для работы электродвигателей нужна электрическая энергия. Двигатели автомобилей работают, используя энергию, выделяющуюся при сгорании топлива. Живые организмы (в том числе человек) могут совершать работу, так как используют энергию пищи. При работе гидроэлектростанций используется энергия падающей воды. При совершении механической работы энергия тел обязательно изменяется: у одних тел уменьшается, у других – увеличивается.

Например, при подъёме кирпичей энергия грузчика уменьшается, а энергия кирпичей увеличивается.  Это подтверждается тем, что чем выше они подняты, тем большую механическую работу смогут произвести (например, когда упадут, подобно камню на рисунке с орехом). Энергия грузчика уменьшается, так как его способность поднимать новые кирпичи всё меньше.


Рассмотрим два вида механической энергии:

1. Потенциальная энергия (от латинского «потенция» — возможность) – это энергия взаимодействия. Потенциальной энергией, например, обладает тело, поднятое относительно Земли, потому что энергия зависит от взаимного положения его и Земли и их взаимного притяжения. Если считать потенциальную энергию тела, лежащего на Земле равной нулю, то энергия тела, поднятого на какую-то высоту, определяется той работой, которую совершит сила тяжести при падении тела на Землю. Любое тело, поднятое над поверхностью Земли, обладает относительно неё потенциальной энергией. Кроме того, потенциальной энергией обладает натянутая тетива лука, пружина заведенного механизма, т. е. всякое упругое деформированное тело.

Найдем потенциальную энергию тела, поднятого над Землей. Чтобы поднять яблоко надо совершить работу, кроме того на яблоко будит действовать сила тяжести

A = Fтяж h

От чего зависит потенциальная энергия? Таким образом, потенциальная энергия зависит от силы взаимодействия тел и расстояния между ними.

2. Кинетическая энергия(от латинского «кинетикос» — движение) – это энергия движущихся тел. Кинетическая энергия тем больше, чем больше масса тела и скорость его движения.

Таким образом, в общем случае тело обладает одновременно как кинетической, так и потенциальной энергией. Их сумму называют полной механической энергией.

Давайте рассмотрим превращение энергии:

Яблоко свободно падает с дерева. Найдите его кинетическую и потенциальную энергию тела в точках 1, 2 и 3.

Ep переходит в Ek

Укажите превращения одного вида энергии в другой:

1. При бросании мяча вертикально вверх

2. При спуске велосипедиста с горы.

Делаем вывод: Энергия не исчезает и не возникает из ничего, она переходит из одного вида в другой и передаётся от одного тела к другому.

IV. Закрепление нового материала:

Задача

Найдите потенциальную энергию тела массой 3 кг на высоте 6м и 4м от поверхности земли. Сравните их потенциальные энергии.

Сравни кинетические энергии следующих тел:

  1. Грузовой и легковой автомобили, движущиеся со скоростью 60 км/ч.

  2. Бегущий слон и пуля, вылетевшая из ружья.

  3. Два самолета равной массы, летящие с одинаковой скоростью на разных высотах.

  4. Автомобиль, обгоняющий другой автомобиль такой же массы.

Тест:

  1. Какой энергией обладает растянутая или сжатая пружина?

  2. Камень, падающий на землю, непосредственно перед ударом о землю обладает ………энергией.

  3. Пружина заведенных часов обладает …….. энергией.

  4. Какой энергией относительно земли обладает летящий самолет?

  5. От чего зависит потенциальная энергия тела, поднятого над Землей ?

Вопросы:

  1. Какие виды энергий существуют?

  2. Какую энергию называют потенциальной?

  3. По какой формуле можно вычислить потенциальную энергию?

  4. От каких величин зависит потенциальная энергия тела?

  5. В каком случае потенциальная энергия тела равна нулю?

  6. Какую энергию называют кинетической?

  7. По какой формуле можно вычислить кинетическую энергию?

  8. От каких величин зависит кинетическая энергия тела?

  9. Каковы единицы измерения энергии?

  10. В каком случае кинетическую энергию тела считают равной нулю?

X. Подведение итогов урока

XI. Домашнее задание: § 68 стр 168 учить, упражнение № 40 (1,2)

«Закон Ома никто не отменял» | Новости Кургана и Курганской области

Дмитрий Костин занял второе место на международном чемпионате профессионального мастерства

Два года назад Дмитрий Костин был гостем нашего проекта «Колесо обозрения». Рассказывая о своих мечтах, он сказал, что хотел бы съездить на мировой чемпионат участником. Желание сбылось, на днях Дмитрий вернулся с 45‑го международного чемпионата профессионального мастерства WorldSkills Kazan-2019, который проходил в конце августа в Казани.

— Дмитрий, расскажите, как выбрали профессию?

— Мне с детства было интересно, как по таким тоненьким проводам проходит электрический ток, благодаря которому в комнате становится светло. Постоянно об этом расспрашивал своих дядей, которые были электриками. Учась в школе, разбирал электрические приборы, чтобы понять, как они работают. Знаете, сколько раз меня током било! Правда, меня это не останавливало, а только подогревало мой интерес. После окончания девятого класса у меня не было никаких сомнений: поступил в Курганский государственный колледж на специальность «Монтаж, наладка и эксплуатация электрооборудования промышленных и гражданских зданий».

— Ваш путь к серебряной медали на международном чемпионате профессионального мастерства WorldSkills был долгим. В течение нескольких лет вы участвовали в различных соревнованиях, доказывали, что вы — один из лучших.

— Честно говоря, у меня не было такой цели — победить, стать лучшим. На чемпионатах мне хотелось проверить свои силы, знания и умения. Когда я выполнял задание, то ставил перед собой задачу — сделать все быстро и качественно. На соревнованиях даже не смотрел, как выполняют работу другие конкурсанты.

Когда учился на первом курсе Курганского государственного колледжа, преподаватели мне предложили попробовать себя на региональном чемпионате JuniorSkills среди школьников по компетенции «Электромонтаж». Тогда я даже не знал, что это за движение WorldSkills. Мне понравилось, было интересно готовиться. На следующий год я выступал на региональном чемпионате «Молодые профессионалы», где занял первое место.

И все завертелось. Дальше я выиграл отборочный этап в Москве, заняв первое место в УрФО, а потом участвовал в национальном чемпионате WorldSkills Russia, на котором занял третье место. За несколько дней нам, участникам, нужно было выполнить монтаж электрооборудования промышленных и гражданских зданий, устранить неисправности.

Правила международного движения WorldSkills очень строгие. По чемпионатной «лестнице» продвигаются ребята, которые занимают только первые места. На всероссийском турнире я был третьим. По правилам, уже не мог участвовать дальше в соревнованиях WorldSkills. Но мне повезло. В конце 2017 года из национальной сборной выбыли участники по моей компетенции «Электромонтаж». Меня пригласили на чемпионат Worldskills Hi-Tech, где соревновались специалисты высокотехнологичных производств. Перед конкурсом мне сказали сразу, что если одержу победу над участником из Швейцарии, то меня возьмут в расширенный состав национальной сборной. Щвейцарец был сильным соперником. Я его немного обошел по баллам, поэтому и прошел в расширенный состав национальной сборной, чтобы тренироваться дальше.

— Я общалась с ребятами, которые участвовали в международном чемпионате WorldSkills Abu Dhabi-2017, который проходил в Объединенных Арабских Эмиратах. Они рассказывали, что им казалось, что их готовили к Олимпийским играм. Каждый день был расписан по минутам. Участники выполняли и практические задания, и посещали тренинги психологов, и занимались английским языком и спортом. Как вы готовились к чемпионату?

— Подготовка действительно была серьезная. В течение года я усиленно тренировался, можно сказать, с раннего утра до позднего вечера. Четыре месяца отрабатывал навыки в московском колледже архитектуры, дизайна и реинжиниринга № 26, в котором находится специализированный центр по подготовке к компетенции «Электромонтаж». Дважды съездил в Китай. Один раз тренировался в колледже, второй раз — на конкурсе «БРИКС», где занял второе место. Перед чемпионатом готовился к соревнованиям в Швейцарии, вместе с участниками из Австрии, Германии. Большое количество времени занимался самостоятельно, изучал документацию, схемы, придумывал сам разные варианты. Свободного времени почти не оставалось.

На тренировках нам специально создавали некомфортные условия. Во время выполнения заданий включали громко музыку. В один день играли произведения Баха, в другой — песни Ольги Бузовой. Возле нас постоянно ходили люди, задавали вопросы. В этом шуме нужно было сосредоточиться и выполнить свою работу. Во время чемпионата я уже не отвлекался на посторонние шумы. Соревнования Worldskills проходят в открытом режиме, в одном большом павильоне, то есть за тобой не только наблюдают эксперты, но и люди, которым просто интересно посмотреть. В общем, представляете, какой там гул.

— Какое задание нужно было выполнить на международном чемпионате профессионального мастерства WorldSkills Kazan-2019?

— Нужно было сделать модель «умного дома» с автоматизированным управлением освещением и другими функциями. На программирование нам дали 2 часа. 17 часов на создание модели и час на поиск неисправностей. Когда заканчивался конкурсный день, я приходил в деревню Универсиады, где жил, и продумывал план действий на следующий день. Расписывал, в какой последовательности буду делать операции. Четыре дня я жил только чемпионатом.

— Правда, что к международному чемпионату вы вместе со своим тренером, преподавателем Курганского государственного колледжа Антоном Филипповым, использовали специальные инструменты?

— Для электромонтажника очень важно, на каком оборудовании он работает. Очень благодарен руководству Курганского государственного колледжа, которое всегда поддерживало меня и закупало необходимые инструменты для подготовки к соревнованиям.

Хорошие пилы, у которых почти нет погрешности, стоят дорого. И их трудно достать в России, нужно заказывать за рубежом. С Антоном Павловичем мы разработали столярное приспособление для резки материала под разным углом, с которым я выступал на соревнованиях.

— Вы побывали во многих странах, познакомилась с коллегами. Чем отличается работа электромонтажников в нашей стране от других?

— Ничем. Закон Ома мы изменить не сможем, как бы ни старались (смеется). У всех разные подходы к работе. Кто-то начинает щиты собирать, кто-то разметку делать, кто-то — кабельнесущие системы. Я сначала просчитываю все размеры, потом приступаю к практике. Устанавливаю щиты, прокладываю провода, подключаю оборудование.

— После победы на чемпионате вы становитесь сертифицированным экспертом движения WorldSkills. Как вы видите свою дальнейшую карьеру?

— В ближайшее время я собираюсь пойти служить в армию. Считаю, что каждый мужчина должен отдать долг своей стране. Пока меня не призвали, буду тренировать студентов Курганского государственного колледжа к соревнованиям WorldSkills. Хотелось бы получить высшее образование, чтобы стать инженером. Планирую поступить в Курганский государственный университет.

— Молодые люди предпочитают уехать из Кургана, а вы наоборот…

— Участвуя в соревнованиях WorldSkills, многому научился, я хочу передать свои знания. Считаю, чтобы наша область развивалась, здесь должны жить и работать профессионалы. Почему я не могу приложить немного усилий, чтобы хороших специалистов становилось больше в Зауралье.

Фото: пресс­-служба правительства Курганской области.

Если вы стали свидетелем интересного события, присылайте сообщения, фото и видео в Viber  и WhatsApp по номеру тел. : +79195740453, в нашей группе «В Контакте»

Олимпиада МФТИ по электронике для школьников / Хабр

В этом году впервые состоится

Олимпиада МФТИ

по электронике для школьников 5-11 классов! Что ожидает участников? Сложные задачи, практическая работа по сборке схем, призы и рекомендации для поступающих!

Задачи для примера: найти общее сопротивление участка цепи, построить таблицу истинности для схемы

Все подробности об олимпиаде вы можете найти в социальной сети для абитуриентов Abitu.Net по адресу: http://abitu.net/event/1970

Олимпиада состоит из двух этапов:

  • Онлайн-этап: 16 декабря — 1 марта 2017 года.
  • Очный этап: конец марта 2017 года

В олимпиаде две возрастных категории. Рассмотрим их поподробнее, поскольку задания кардинально различаются.

5-8 класс

Онлайн-тур длится 3 часа и содержит несложные и забавные задания по электронике. Все задания имеют практическую направленность: в них нужно предсказать поведение устройства, найти ошибки в схеме, выбрать подходящий элемент и дополнить схему.

Поскольку такого предмета, как «Электроника», в школьной программе нет, да и темы эти изучаются в учебнике за 8 класс, то эта возрастная категория содержит мотивирующие задания. Конечно, ученик ответит на задания лучше, если он, к примеру, ходит в кружок электроники или занимается дома самостоятельно. Но даже если он совсем новичок — мы указали темы, которые нужно знать, а также разобрали демо-задачи, поэтому не так сложно подготовиться и изучить материал самостоятельно. О темах и литературе будет далее, более подробно.

Цель — заинтересовать и увлечь электроникой школьников, а также дать возможность кружкам электроники посоревноваться в уровне знаний их воспитанников.

Вот, для примера, разбор одной из демо-задач. Здесь я рассказываю о том, как построить таблицу истинности для схемы из нескольких логических вентилей ИЛИ-НЕ. Как вы видите, это даже и не столько электроника, сколько информатика:


9-11 класс

А в этой возрастной группе уже всё серьёзно: сложные задачи по материалам из школьной программы. Они охватывают разные темы из школьной физики, но упор делается именно на электронику. Здесь цель — выявить самых сообразительных, чтобы в будущем работать с ними уже как со студентами МФТИ. Онлайн-тур длится 4 часа.

Вот вам для примера — разбор первой демонстрационной задачи. Её и не каждый взрослый специалист решит, не правда ли? Только самые хардкорные задачи от кафедры общей физики МФТИ!

Сразу ответ на частый вопрос: сколько баллов к ЕГЭ дает олимпиада? Ответ такой: на данный момент — нисколько, потому что олимпиада в этом году проводится первый раз. Поэтому пока приз такой: баллы в кадастр абитуриентов и рекомендации от организаторов к поступлению в Физтех-школу радиотехники и компьютерных технологий (ФРКТ), а также развивающие подарки и прохождение на заключительный этап на следующий год, когда олимпиада, возможно, станет уровневой

Наша цель — сделать олимпиаду уровневой, чтобы она давала 100 баллов за ЕГЭ по физике. Но для этого олимпиада должна успешно стартовать в этом году и пройти по ключевым характеристикам, таким как число участников.

В чем отличие нашей олимпиады от множества других?

Во-первых, очный этап будет проводиться с конструированием схем на макетной плате! Мы считаем, что электроника невозможна без практики, да и собирать схемы — это нечто новое на олимпиадах.

В разборе демо-задач мы не только объясняем, как их решать, но и показываем решение «вживую» — из электронных компонентов.

Во-вторых, мы постарались сделать задачи из «мотивирующей части» похожими на британский экзамен по электронике GCSE Electronics. Британские школьники могут выбрать его как один из факультативных при получении аттестата об общем среднем образовании. Из материалов теста можно сделать вывод, что экзамен достаточно сложен, при этом задания в нём очень интересные, и совсем не напоминают ЕГЭ. Наше мнение — российские школьники должны тянуться к этой планке и не уступать британским ровесникам.


Источник картинки — видео для подготовки к британскому экзамену по электронике

В-третьих, для нас очень важна мотивирующая часть олимпиады. Мы очень хотим, чтобы на олимпиаде школьники имели шанс познакомиться с электроникой и заинтересоваться ею в как можно более раннем возрасте: даже не в 8-11 классе (когда уже все думают о ЕГЭ и поступлении), а в 5-6 классе. Опыт школьных технических кружков демонстрирует нам, что уже в этом возрасте юный талант в состоянии понять основы электроники и цифровой логики.

Появляется всё больше и больше кружков электроники — на волне интереса к хобби-робототехнике, приходит осознание того, что без электроники робототехника невозможна. Для кружков наша олимпиада — шанс проверить уровень своих воспитанников, шанс доказать родителям, что дети занимаются не впустую. Если у вас есть знакомые руководители кружков по электронике или робототехнике — пришлите им нашу статью, мы будем очень благодарны!


Фото с занятий кружка по электронике в «Лиге роботов». Куда приложить свои таланты ученикам кружков? По хобби-робототехнике есть множество соревнований, а вот по электронике их единицы…

Для подготовки к олимпиаде мы подготовили и предлагаем вам примерный список тем. В полном виде его можно

посмотреть

на сайте, но если вкратце:

  • Для школьников 5-8 классов это электрические цепи (закон Ома, параллельные и последовательные соединения), радиодетали (резисторы, светодиоды, конденсаторы, транзисторы, и прочие), цифровые микросхемы (счетчики, триггеры, мультиплексоры, дешифраторы), основы информатики (двоичное счисление, логические вентили)
  • Для 9-классников и более старших школьников — это школьная программа по физике: электроника, электротехника, термодинамика, механика и другие темы. Задача может попасться из любого раздела, поскольку олимпиада проверяет знание участником, в том числе, всего объема школьной программы по физике.

Список литературы для подготовки к олимпиаде мы составили тоже достойный: здесь не только учебники, но и популярная литература, способная заинтересовать и увлечь. Вот литература для 5-8 классов, а для более старших в список добавляются также соответствующие учебники по физике для 9-11 классов.

  1. Перышкин А.В. Физика. 8 класс. Учебник.
  2. Петцольд Ч. Код. Тайный язык информатики.
  3. Платт Ч. Электроника для начинающих.
  4. Ревич Ю.В. Азбука электроники.
  5. Ревич Ю.В. Занимательная электроника.  
  6. Сворень Р.А. Электроника. Шаг за шагом.  
  7. Харрис Д.,  Харрис С. Цифровая схемотехника и архитектура компьютера

Последняя позиция из списка должна быть хорошо знакома хабровчанам благодаря

постамYuriPanchul

. Это учебник для вузов, но он написан понятным языком, там есть простые главы об основах цифровой электроники.

“Искусство схемотехники” Хоровица и Хилла мы в список литературы всё-таки включать не стали, хотя знаем, что есть талантливая молодежь, которой и это под силу!

Хочу поделиться своей историей о важности олимпиад в профориентации школьников.

Мне было 13 лет, когда я заинтересовалась лингвистикой. Как? Ведь в школе такого предмета нет. Ответ простой: лингвистика была среди дисциплин олимпиады «Турнир Ломоносова», там были интересные задачки на логическое мышление и языковую интуицию. Мне они так понравились, что я с интересом обсуждала задачи с другими конкурсантами, стала читать книжки по лингвистике и захотела поступать в вуз на соответствующий факультет. В итоге, моя жизнь сложилась иначе, и я получила образование программиста, но согласитесь — лингвистика и точные науки весьма тесно связаны. До той олимпиады я не представляла, чем хочу заниматься: некоторые предметы нравились больше остальных, но желания заниматься ими профессионально не возникало.

Мне бы хотелось, чтобы в итоге нашей олимпиады у ребят загорелись глаза, и чтобы эти ребята говорили: «Теперь я знаю, чего я хочу! Я хочу стать инженером и разрабатывать электронные устройства!» Вот в чем цель включения в олимпиаду предмета не из школьной программы: расширить кругозор и дать школьникам представление о новой для них дисциплине.

Автор – Татьяна Волкова, специалист по учебно-методической работе ЦИОТ МФТИ (направление поддержки развития технического творчества), разработчик продуктов «Киберфизики»

Закон Ома для полной цепи ❤️

1. Источник тока

При прохождении тока в проводнике выделяется некоторое количество теплоты. Согласно закону сохранения энергии при этом в электрическую цепь должна поступать энергия.

Может ли источником этой энергии быть электростатическое поле? Нет, не может, потому что при перемещении заряда вдоль всей цепи, то есть по замкнутой траектории, работа электростатического поля равна кулю.

Следовательно, для существования тока в замкнутой цепи в ней должен быть участок, на котором свободные заряды движутся против сил электростатического

поля. Таким участком цепи является источник тока (рис. 59.1).

В источнике тока на свободные заряды действуют силы, которые имеют не электростатическую природу. Их называют сторонними силами. В результате действия сторонних сил происходит разделение зарядов: на одном полюсе источника тока накапливается положительный заряд, а на другом — отрицательный.

Вследствие этого возникает электростатическое поле, которое движет свободные заряды в электрической цепи вне источника тока, то есть во внешней цепи.

В химических источниках тока сторонние силы имеют химическую

природу. Например, если погрузить цинковый и медный электроды в серную кислоту, то положительные ионы цинка будут чаще покидать электрод, чем положительные ионы меди. В результате между медным и цинковым электродами возникнет разность потенциалов: потенциал медного электрода будет больше, чем цинкового.

Медный электрод станет положительным полюсом источника тока, а цинковый — отрицательным.

В генераторах электростанций сторонними силами являются силы, действующие на свободные электроны в металле со стороны вихревого электрического поля, порождаемого переменным магнитным полем. Работа вихревого электрического поля по перемещению заряда вдоль замкнутого контура не равна нулю. Действие генераторов тока мы рассмотрим в курсе физики 11-го класса.

Электродвижущая сила источника тока

В источнике тока сторонние силы, перемещая свободные заряды против действия сил электростатического поля, совершают работу, которую мы обозначим Aстор.

Эта работа пропорциональна заряду q, который перемещается вдоль цепи за данный промежуток времени. Поэтому отношение работы сторонних сил к величине заряда не зависит ни от Aстор, ни от q. Следовательно, оно является характеристикой источника тока. Это отношение называют электродвижущей силой источника (ЭДС) и обозначают ξ:

Ξ = Aстор/q. (1)

(Это название не совсем удачно, потому что ЭДС — не «сила» в механическом смысле, а энергетическая характеристика источника.)

ЭДС, как и напряжение, измеряют в вольтах. Например, ЭДС батарейки составляет несколько вольт.

2. Закон Ома для полной цепи

Если сила тока в цепи равна I, то за время t по цепи проходит заряд q = It. Поэтому формулу (1) можно записать в виде

Aстор = ξIt. (2)

При этом во внешней цепи сопротивлением R выделяется количество теплоты

Qвнеш = I2Rt, (3)

А внутри источника тока выделяется количество теплоты

Qвнутр = I2rt, (4)

Где r — сопротивление источника, которое называют его внутренним сопротивлением.

Из закона сохранения энергии следует, что

Qвнеш + Qвнутр = Aстор. (5)

? 1. Докажите, что из формул (2) — (5) следует:

I = ξ / (R + r). (6)

Это соотношение называют законом Ома для полной цепи.

Сумму сопротивлений R + r называют полным сопротивлением цепи.

? 2. ЭДС источника тока 12 В, а его внутреннее сопротивление равно 2 Ом. а) Чему равна сила тока в цепи, если сопротивление внешней цепи равно 4 Ом? б) Какова максимально возможная сила тока в цепи?

При каком сопротивлении внешней цепи это имеет место?

? 3. При внешнем сопротивлении 2 Ом сила тока в цепи равна 1,5 А, а при внешнем сопротивлении 4 Ом сила тока равна 1 А. а) Чему равно внутреннее сопротивление источника? б) Чему равна ЭДС источника?

Напряжение на полюсах источника

Закон Ома для полной цепи можно записать в виде

Ξ = IR + Ir. (7)

Первое слагаемое в этой формуле согласно закону Ома для участка цепи равно напряжению U на полюсах источника тока:

IR = U.

Поэтому формулу (7) можно записать в виде

U = ξ — Ir. (8)

Формула (8) выражает зависимость напряжения U на полюсах источника тока от силы тока I в цепи.

Поставим опыт Зависимость U(I) можно измерить на опыте, изменяя силу тока в цепи с помощью реостата (рис. 59.2, а, б). Красная пунктирная линия на схеме 59.2, б показывает, как идет ток в реостате.

Например, если ползунок реостата, изображенного на рисунке 59,2, а, сдвинуть вправо, то сопротивление реостата увеличится, потому что увеличится длина обмотки, по которой идет ток.

? 4. На рисунке 59.3 изображен график зависимости U(I) для некоторого источника тока. а) Чему равна ЭДС этого источника тока? б) Чему равна наибольшая сила тока? в) Чему равно внутреннее сопротивление источника тока? г) Чему равно внешнее сопротивление, когда сила тока равна нулю?

д) Чему равно внешнее сопротивление, когда сила тока максимальна? е) Чему равно внешнее сопротивление при I = 1,5 А?

Максимальное напряжение на полюсах источника равно ξ. Это имеет место при I = 0. Сила тока равна нулю, когда полюса источника разомкнуты (в этом случае внешнее сопротивление цепи является бесконечно большим).

Следовательно, напряжение между разомкнутыми полюсами источника тока равно ЭДС этого источника.

Минимальное же напряжение между полюсами источника равно нулю. Это имеет место при коротком замыкании, когда внешнее сопротивление R = 0. В этом случае сила тока максимальна. Ее называют силой тока короткого замыкания.

? 5. Покажите, что сила тока короткого замыкания выражается формулой

Iка = ξ/r. (9)

Подсказка. Воспользуйтесь законом Ома для полной цепи.

Из формулы (9) видно, что при очень малом внутреннем сопротивлении источника (как, например, у автомобильного аккумулятора) сила тока короткого замыкания будет очень большой, что может вывести источник тока из строя.

? 6. Сила тока при коротком замыкании батарейки равна 2 А. Когда к батарейке подключили резистор сопротивлением 4 Ом, сила тока стала равной 1 А. а) Как изменилось полное сопротивление цепи? б) Чему равно внутреннее сопротивление батарейки?

Измерив напряжение на полюсах источника и силу тока в цепи при двух различных значениях сопротивления внешней цепи, можно найти ЭДС ξ и внутреннее сопротивление r источника тока. Это можно сделать графически и аналитически.

? 7. При силе тока в цепи 2 А напряжение на полюсах источника равно 8 В, а при силе тока 4 А напряжение на полюсах равно 4 В. а) Постройте систему координат I, U и нанесите две точки графика зависимости U(I) согласно приведенным данным. б) Проведите прямую через эти точки и отметьте точки пересечения этой прямой с осями координат. Используя этот график, найдите, чему равны ЭДС, сила тока короткого замыкания и внутреннее сопротивление источника тока.

в) Используя уравнение (8), составьте систему двух уравнений с двумя неизвестными ξ и r и решите ее.

3. КПД источника тока

Работу тока во внешней цепи называют полезной работой. Обозначим ее Aпол. Используя формулу для работы тока, получаем:

Aпол = I2Rt.

Поскольку источник обладает внутренним сопротивлением, полезная работа меньше работы сторонних сил, потому что часть работы сторонних сил расходуется на выделение в источнике тока количества теплоты I2rt. Поскольку

Aстор = I2Rt + I2rt,

Получаем для отношения полезной работы к работе сторонних сил:

Η = Aпол / Aстор = (I2Rt) / (I2Rt + I2rt) = R / (R + r).

Это отношение, выраженное в процентах, называют КПД источника тока.

? 8. При каком отношении внешнего сопротивления к внутреннему сопротивлению КПД источника тока равен: 50 %; 80 %? Почему случай, когда КПД источника тока равен 100 %, не представляет практического интереса?

Дополнительные вопросы и задания

9. На рисунке 59.4 изображена схема измерения зависимости напряжения U на полюсах источника тока от силы тока I. Амперметр и вольтметр считайте идеальными. Сопротивление всей обмотки реостата 16 Ом. При первом положении ползунка реостата показания приборов 3 А и 8 В, а при втором положении — 2 А и 12 В.

а) Как сдвинули ползунок реостата между первым и вторым измерениями — влево или вправо? б) Чему равны ЭДС источника тока и его внутреннее сопротивление? в) Каковы будут показания приборов, если ползунок реостата передвинуть в крайнее левое положение? в крайнее правое?

10. При силе тока 6 А мощность тока во внешней цепи равна 90 Вт, а при силе тока 2 А она равна 60 Вт. а) Чему равна ЭДС источника тока? б) Чему равно внутреннее сопротивление источника тока? в) Чему равно напряжение на полюсах источника в первом и втором случаях?

г) Чему равен КПД источника тока в первом и втором случаях?

19.1 Закон Ома — Физика

Постоянный и переменный ток

Подобно тому, как вода течет с большой высоты на низкую, электроны, которые могут свободно двигаться, перемещаются из места с низким потенциалом в место с высоким потенциалом. Аккумулятор имеет две клеммы с разным потенциалом. Если клеммы соединить токопроводящим проводом, будет протекать электрический ток (заряды), как показано на рис. 19.2. Затем электроны будут перемещаться от клеммы батареи с низким потенциалом (, отрицательный конец ) через провод и войти в клемму батареи с высоким потенциалом (, положительный конец ).

Фигура 19.2 У батареи есть провод, соединяющий положительные и отрицательные клеммы, что позволяет электронам перемещаться от отрицательной клеммы к положительной клемме.

Поддержка учителей

Поддержка учителей

Подчеркните, что электроны движутся от отрицательного вывода к положительному, потому что они несут отрицательный заряд, поэтому они отталкиваются кулоновской силой от отрицательного вывода.

Электрический ток — это скорость, с которой движется электрический заряд.Большой ток, например, используемый для запуска двигателя грузовика, очень быстро перемещает большое количество заряда, в то время как слабый ток, например, используемый для работы ручного калькулятора, перемещает небольшое количество заряда медленнее. В форме уравнения электрический ток I определяется как

, где ΔQΔQ — количество заряда, протекающего мимо данной области, а ΔtΔt — время, за которое заряд проходит мимо этой области. Единица СИ для электрического тока — ампер (А), названная в честь французского физика Андре-Мари Ампера (1775–1836).Один ампер — это один кулон в секунду, или

.

Электрический ток, движущийся по проводу, во многом подобен водяному току, движущемуся по трубе. Чтобы определить поток воды через трубу, мы можем подсчитать количество молекул воды, протекающих через данный участок трубы. Как показано на рис. 19.3, электрический ток очень похож. Мы подсчитываем количество электрических зарядов, протекающих по сечению проводника; в данном случае проволока.

Фигура 19,3 Электрический ток, протекающий по этому проводу, равен заряду, прошедшему сечение А, деленному на время, за которое этот заряд проходит сечение А .

Поддержка учителей

Поддержка учителей

Обратите внимание, что носители заряда на этом рисунке положительны, поэтому они движутся в том же направлении, что и электрический ток.

Предположим, что каждая частица q на рис. 19.3 несет заряд q=1nCq=1nC, и в этом случае показанный общий заряд будет ΔQ=5q=5nC ΔQ=5q=5nC . Если эти заряды пройдут через площадь А за время Δt=1нс Δt=1нс, то ток будет

I=ΔQΔt=5nC1ns=5А.I=ΔQΔt=5nC1ns=5А.

19.1

Обратите внимание, что мы приписали положительный заряд зарядам на рис. 19.3. Обычно отрицательные заряды — электроны — представляют собой подвижный заряд в проводах, как показано на рис. 19.2. Положительные заряды обычно застревают в твердых телах и не могут свободно перемещаться. Однако, поскольку положительный ток, движущийся вправо, аналогичен отрицательному току равной величины, движущемуся влево, как показано на рис. 19.4, мы определяем обычный ток как текущий в том же направлении, в котором протекал бы положительный заряд, если бы он мог двигаться. .Таким образом, если не указано иное, предполагается, что электрический ток состоит из положительных зарядов.

Также обратите внимание, что один кулон — это значительное количество электрического заряда, поэтому 5 А — это очень большой ток. Чаще всего вы увидите ток порядка миллиампер (мА).

Фигура 19,4 а) Электрическое поле направлено вправо, ток движется вправо, положительные заряды движутся вправо. (b) Эквивалентная ситуация, но с отрицательными зарядами, движущимися влево.Электрическое поле и ток по-прежнему находятся справа.

Поддержка учителей

Поддержка учителей

Укажите, что электрическое поле одинаково в обоих случаях и что ток течет в направлении электрического поля.

Предупреждение о заблуждении

Убедитесь, что учащиеся понимают, что ток определяется как направление, в котором будет течь положительный заряд, даже если электроны чаще всего являются подвижными носителями заряда. Математически результат будет одинаковым независимо от того, предположим ли мы, что положительный заряд течет в одну сторону, или отрицательный — в противоположную. Однако физически ситуация совершенно иная (хотя разница уменьшается после определения дырок).

Снап Лаборатория

Овощной ток

Эта лабораторная работа помогает учащимся понять, как работает ток. Учитывая, что частицы, заключенные в трубу, не могут занимать одно и то же пространство, вталкивание большего количества частиц в один конец трубы вытеснит такое же количество частиц из противоположного конца.Это создает поток частиц.

Найдите соломинку и сушеный горошек, которые могут свободно перемещаться в соломе. Положите соломинку на стол и наполните ее горошком. Когда вы вставляете одну горошину с одного конца, с другого конца должна выйти другая горошина. Эта демонстрация является моделью электрического тока. Определите часть модели, которая представляет электроны, и часть модели, которая представляет подачу электроэнергии. За 30 с посчитайте, сколько горошин вы можете протолкнуть через соломинку.Когда закончите, рассчитайте ток горошин , разделив количество горошин на время в секундах.

Обратите внимание, что движение гороха основано на физическом столкновении горошин друг с другом; электроны толкают друг друга за счет взаимно отталкивающих электростатических сил.

Предположим, у вас есть резервуар с горохом, каждый из которых заряжен до 1 нКл. Если вы пропускаете горох через соломинку со скоростью четыре горошинки в секунду, как вы вычислите электрический ток, переносимый вашими заряженными горошинами?

  1. Измерьте длину соломинки, затем разделите на скорость потока горошин и умножьте на стоимость одной горошинки.

  2. Умножьте расход гороха на стоимость гороха.

  3. Измерьте длину соломинки, затем умножьте на скорость потока горошин и разделите на стоимость горошин.

  4. Разделите расход гороха на стоимость гороха.

Направление обычного тока — это направление, в котором будет течь положительный заряд .В зависимости от ситуации могут перемещаться положительные заряды, отрицательные заряды или и то, и другое. В металлических проводах, как мы видели, ток переносится электронами, поэтому движутся отрицательные заряды. В ионных растворах, таких как соленая вода, движутся как положительно заряженные, так и отрицательно заряженные ионы. Это верно и для нервных клеток. Чисто положительные токи относительно редки, но встречаются. История приписывает американскому политику и ученому Бенджамину Франклину описание тока как направления, в котором положительные заряды текут по проводу.Он назвал тип заряда, связанного с электронами, отрицательным задолго до того, как стало известно, что они несут ток во многих ситуациях.

Когда электроны движутся по металлической проволоке, они сталкиваются с препятствиями, такими как другие электроны, атомы, примеси и т. д. Электроны рассеиваются от этих препятствий, как показано на рис. 19.5. Обычно электроны теряют энергию при каждом взаимодействии. Таким образом, для поддержания движения электронов требуется сила, которая обеспечивается электрическим полем. Электрическое поле в проводе направлено от конца провода с более высоким потенциалом к ​​концу провода с более низким потенциалом.Электроны, несущие отрицательный заряд, в среднем движутся (или дрейфуют ) в направлении, противоположном электрическому полю, как показано на рис. 19.5.

Фигура 19,5 Свободные электроны, движущиеся в проводнике, совершают много столкновений с другими электронами и атомами. Показан путь одного электрона. Средняя скорость свободных электронов направлена ​​против электрического поля. Столкновения обычно передают энергию проводнику, поэтому для поддержания постоянного тока требуется постоянная подача энергии.

До сих пор мы обсуждали ток, который постоянно движется в одном направлении. Это называется постоянным током, потому что электрический заряд течет только в одном направлении. Постоянный ток часто называют постоянным током или током.

Многие источники электроэнергии, такие как гидроэлектростанция, показанная в начале этой главы, производят переменный ток, в котором направление тока меняется вперед и назад. Переменный ток часто называют , переменный ток .Переменный ток движется вперед и назад через равные промежутки времени, как показано на рис. 19.6. Переменный ток, поступающий из обычной настенной розетки, не меняет направление внезапно. Скорее, он плавно увеличивается до максимального тока, а затем плавно уменьшается до нуля. Затем он снова растет, но в противоположном направлении, пока не достигнет того же максимального значения. После этого она плавно уменьшается до нуля, и цикл начинается заново.

Фигура 19,6 При переменном токе направление тока меняется на противоположное через равные промежутки времени.На графике вверху показана зависимость тока от времени. Отрицательные максимумы соответствуют току, движущемуся влево. Положительные максимумы соответствуют току, движущемуся вправо. Между этими двумя максимумами ток регулярно и плавно чередуется.

Поддержка учителей

Поддержка учителей

Помогите учащимся интерпретировать график, подчеркнув, что ток не меняет направление мгновенно, а плавно переходит от одного максимума к противоположному максимуму и обратно.Объясните, что четыре изображения внизу показывают ток в соответствующих максимумах. Обратите внимание, что для упрощения интерпретации операторы мобильной связи на изображении считаются положительными.

К устройствам, использующим переменный ток, относятся пылесосы, вентиляторы, электроинструменты, фены и многие другие. Эти устройства получают необходимую им мощность, когда вы подключаете их к сетевой розетке. Настенная розетка подключена к электросети, которая обеспечивает переменный потенциал (потенциал переменного тока). Когда ваше устройство подключено к сети, потенциал переменного тока перемещает заряды вперед и назад в цепи устройства, создавая переменный ток.

Однако многие устройства используют постоянный ток, например компьютеры, сотовые телефоны, фонарики и автомобили. Одним из источников постоянного тока является батарея, которая обеспечивает постоянный потенциал (потенциал постоянного тока) между своими клеммами. Когда ваше устройство подключено к аккумулятору, потенциал постоянного тока перемещает заряд в одном направлении по цепи вашего устройства, создавая постоянный ток. Другой способ получения постоянного тока — использование трансформатора, который преобразует переменный потенциал в постоянный. Небольшие трансформаторы, которые можно подключить к настенной розетке, используются для зарядки ноутбука, мобильного телефона или другого электронного устройства.Люди обычно называют это зарядным устройством или батареей , но это трансформатор, который преобразует переменное напряжение в постоянное напряжение. В следующий раз, когда кто-то попросит одолжить ваше зарядное устройство для ноутбука, скажите им, что у вас нет зарядного устройства для ноутбука, но они могут одолжить ваш переходник.

Рабочий пример

Ток при ударе молнии

Удар молнии может передать до 10201020 электронов из облака на землю. Если удар длится 2 мс, какова средняя сила тока в молнии?

Стратегия

Используйте определение тока I=ΔQΔtI=ΔQΔt .Заряд ΔQΔQ из 10201020 электронов составляет ΔQ=neΔQ=ne, где n=1020n=1020 — число электронов, а e=−1,60×10−19Ce=−1,60×10−19C — заряд электрона. Это дает

ΔQ=1020×(-1,60×10-19°С)=-16,0°С. ΔQ=1020×(-1,60×10-19°С)=-16,0°С.

19.2

Время Δt=2×10−3 с Δt=2×10−3 с – это продолжительность удара молнии.

Решение

Сила тока при ударе молнии

I=ΔQΔt=-16,0C2×10-3с=-8кA.I=ΔQΔt=-16,0C2×10-3с=-8кА.

19.3

Обсуждение

Знак минус отражает тот факт, что электроны несут отрицательный заряд. Таким образом, хотя электроны текут от облака к земле, положительный ток определяется как течет от земли к облаку.

Рабочий пример

Средний ток для зарядки конденсатора

В цепи, содержащей конденсатор и резистор, требуется 1 мин для зарядки конденсатора емкостью 16 мкФ от 9-вольтовой батареи. Какова средняя сила тока за это время?

Стратегия

Мы можем определить заряд конденсатора, используя определение емкости: C=QVC=QV .Когда конденсатор заряжается от 9-вольтовой батареи, напряжение на конденсаторе будет V=9VV=9V. Это дает заряд

Подставляя это выражение для заряда в уравнение для тока I=ΔQΔtI=ΔQΔt, мы можем найти средний ток.

Решение

Средний ток

I=ΔQΔt=CVΔt=(16×10-6F)(9В)60с=2,4×10-6А=2,4мкА.I=ΔQΔt=CVΔt=(16×10-6Ф)(9В)60с=2,4×10-6А =2,4 мкА.

19,5

Обсуждение

Этот малый ток типичен для тока, встречающегося в цепях, подобных этой.

Сопротивление и закон Ома

Как упоминалось ранее, электрический ток в проводе во многом подобен воде, протекающей по трубе. На поток воды, который может течь по трубе, влияют препятствия в трубе, такие как засоры и узкие участки трубы. Эти препятствия замедляют течение тока по трубе. Точно так же электрический ток в проводе может быть замедлен многими факторами, включая примеси в металле провода или столкновения между зарядами в материале.Эти факторы создают сопротивление электрическому току. Сопротивление — это описание того, насколько провод или другой электрический компонент сопротивляется потоку заряда через него. В 19 веке немецкий физик Георг Симон Ом (1787–1854) экспериментально установил, что сила тока в проводнике пропорциональна падению напряжения на проводнике с током.

Константой пропорциональности является сопротивление R материала, что приводит к

Это соотношение называется законом Ома.Его можно рассматривать как причинно-следственную связь, где напряжение является причиной, а ток — следствием. Закон Ома — это эмпирический закон, подобный закону трения, а это означает, что это экспериментально наблюдаемое явление. Единицами сопротивления являются вольты на ампер или В/А. Мы называем V/A Ом , что обозначается заглавной греческой буквой омега (ΩΩ). Таким образом,

1Ом=1В/А(1.4).1Ом=1В/А(1.4).

Закон Ома выполняется для большинства материалов и при обычных температурах. При очень низких температурах сопротивление может упасть до нуля (сверхпроводимость).При очень высоких температурах тепловое движение атомов в материале препятствует потоку электронов, увеличивая сопротивление. Многие вещества, для которых выполняется закон Ома, называются омическими. К омическим материалам относятся хорошие проводники, такие как медь, алюминий и серебро, а также некоторые плохие проводники при определенных обстоятельствах. Сопротивление омических материалов остается практически одинаковым в широком диапазоне напряжений и токов.

Смотреть физику

Введение в электричество, цепи, ток и сопротивление

В этом видео представлен закон Ома и показана простая электрическая цепь.Спикер использует аналогию с давлением, чтобы описать, как электрический потенциал заставляет двигаться заряд. Он называет электрический потенциал , электрическое давление . Другой способ представления об электрическом потенциале — представить, что множество частиц одного знака скопилось в небольшом ограниченном пространстве. Поскольку эти заряды имеют одинаковый знак (все они положительные или все отрицательные), каждый заряд отталкивает окружающие его заряды. Это означает, что множество зарядов постоянно выталкивается за пределы пространства.Полная электрическая цепь подобна открытию двери в маленьком пространстве: какие бы частицы ни подтолкнули к двери, теперь у них есть способ убежать. Чем выше электрический потенциал, тем сильнее каждая частица давит на другую.

Если на принципиальной схеме, показанной на видео, вместо одного резистора R начертить два резистора сопротивлением R каждый, что можно сказать о токе через цепь?

  1. Количество тока в цепи должно уменьшиться вдвое.

  2. Количество тока в цепи должно увеличиться вдвое.

  3. Ток в цепи должен оставаться одинаковым.

  4. Количество тока в цепи удвоится.

Виртуальная физика

Закон Ома

Эта симуляция имитирует простую схему с батареями, обеспечивающими источник напряжения, и резистором, подключенным к батареям.Посмотрите, как на ток влияет изменение сопротивления и/или напряжения. Обратите внимание, что сопротивление моделируется как элемент, содержащий малых рассеивающих центров . Они представляют собой примеси или другие препятствия, препятствующие прохождению тока.

Исследования PhET: Закон Ома. Посмотрите, как форма уравнения закона Ома соотносится с простой цепью. Отрегулируйте напряжение и сопротивление и посмотрите, как изменится ток в соответствии с законом Ома. Размеры символов в уравнении изменяются в соответствии с принципиальной схемой.

В цепи, если сопротивление оставить постоянным, а напряжение удвоить (например, с 3\,\text{В} до 6\,\text{В}), как изменится ток? Соответствует ли это закону Ома?

  1. Ток удвоится. Это соответствует закону Ома, поскольку ток пропорционален напряжению.

  2. Ток удвоится. Это не соответствует закону Ома, поскольку ток пропорционален напряжению.

  3. Ток увеличится вдвое. Это соответствует закону Ома, поскольку ток пропорционален напряжению.

  4. Ток уменьшится вдвое. Это не соответствует закону Ома, поскольку ток пропорционален напряжению.

Рабочий пример

Сопротивление фары

Чему равно сопротивление автомобильной фары, через которую 2.50 А протекает при подаче на него 12,0 В?

Стратегия

Закон Ома говорит нам, что Vheadlight=IRheadlightVheadlight=IRheadlight . Падение напряжения при прохождении через фару — это просто повышение напряжения, обеспечиваемое аккумулятором, Vheadlight=VbatteryVheadlight=Vbattery. Мы можем использовать это уравнение и изменить закон Ома, чтобы найти сопротивление RheadlightRheadlight фары.

Решение

Решение закона Ома для сопротивления фары дает

Vheadlight=IRheadlightVbattery=IRheadlightRheadlight=VbatteryI=12V2.5A=4,8Ω.Vheadlight=IRheadlightVbattery=IRheadlightRheadlight=VbatteryI=12V2.5A=4,8Ω.

19,6

Обсуждение

Это относительно небольшое сопротивление. Как мы увидим ниже, сопротивления в цепях обычно измеряются в кВт или МВт.

Рабочий пример

Определите сопротивление по графику ток-напряжение

Предположим, вы прикладываете к цепи несколько разных напряжений и измеряете ток, проходящий через цепь.График ваших результатов показан на рис. 19.7. Каково сопротивление цепи?

Фигура 19,7 Линия показывает ток как функцию напряжения. Обратите внимание, что сила тока указана в миллиамперах. Например, при 3 В ток равен 0,003 А или 3 мА.

Стратегия

График показывает, что ток пропорционален напряжению, что соответствует закону Ома. По закону Ома (V=IRV=IR) константа пропорциональности равна сопротивлению R .Поскольку на графике ток показан как функция напряжения, мы должны преобразовать закон Ома в следующую форму: I=VR=1R×VI=VR=1R×V. Это показывает, что наклон линии I по сравнению с V составляет 1R1R. Таким образом, если мы найдем наклон линии на рисунке 19.7, мы можем вычислить сопротивление R .

Решение

Наклон линии равен подъему , деленному на пробег . Глядя на нижний левый квадрат сетки, мы видим, что линия поднимается на 1 мА (0.001 А) и работает при напряжении 1 В. Таким образом, наклон линии равен

наклон = 0,001A1V. наклон = 0,001A1V.

19,7

Приравнивание наклона к 1R1R и решение R дает

1R=0,001A1R=1V0,001A=1000 Ом1R=0,001A1R=1V0,001A=1000 Ом

19,8

или 1 кОм.

Обсуждение

Это сопротивление больше, чем в предыдущем примере. Сопротивления, подобные этому, распространены в электрических цепях, как мы узнаем в следующем разделе.Обратите внимание, что если бы линия на рис. 19.7 не была прямой, то материал не был бы омическим, и мы не смогли бы использовать закон Ома. Материалы, которые не подчиняются закону Ома, называются неомическими.

Закон

Ом — Как соотносятся напряжение, ток и сопротивление | Закон Ома

Первое и, возможно, самое важное соотношение между током, напряжением и сопротивлением называется законом Ома. Он был открыт Георгом Симоном Омом и опубликован в его статье 1827 года «Математическое исследование гальванической цепи».

Напряжение, ток и сопротивление

Электрическая цепь образуется, когда создается токопроводящий путь, позволяющий электрическому заряду непрерывно двигаться. Это непрерывное движение электрического заряда по проводникам цепи называется током , и его часто называют «потоком», точно так же, как течение жидкости через полую трубу.

Сила, побуждающая носители заряда «течь» по цепи, называется напряжением . Напряжение — это особая мера потенциальной энергии, которая всегда является относительной между двумя точками.

Когда мы говорим об определенной величине напряжения, присутствующего в цепи, мы имеем в виду измерение того, сколько потенциальной энергии существует для перемещения носителей заряда из одной конкретной точки этой цепи в другую конкретную точку. Без ссылки на две точки термин «напряжение» не имеет смысла.

Ток имеет тенденцию двигаться по проводникам с некоторой степенью трения или противодействия движению. Это противодействие движению правильнее назвать сопротивлением .Величина тока в цепи зависит от величины напряжения и величины сопротивления в цепи, препятствующего протеканию тока.

Как и напряжение, сопротивление является величиной относительной между двумя точками. По этой причине величины напряжения и сопротивления часто указываются как находящиеся «между» или «поперек» двух точек цепи.

Единицы измерения: вольт, ампер и ом

Чтобы иметь возможность делать осмысленные утверждения об этих величинах в цепях, мы должны уметь описывать их величины таким же образом, как мы могли бы количественно определять массу, температуру, объем, длину или любую другую физическую величину.Для массы мы могли бы использовать единицы «килограмм» или «грамм».

Для температуры мы можем использовать градусы Фаренгейта или градусы Цельсия. Вот стандартные единицы измерения электрического тока, напряжения и сопротивления:

 

 

«Символ», указанный для каждой величины, представляет собой стандартную букву алфавита, используемую для представления этой величины в алгебраическом уравнении. Подобные стандартные буквы распространены в физических и инженерных дисциплинах и признаны во всем мире.

«Сокращение единиц измерения» для каждой величины представляет собой буквенный символ, используемый в качестве сокращенного обозначения для конкретной единицы измерения. И да, этот странно выглядящий символ «подкова» — это заглавная греческая буква Ω, просто символ иностранного алфавита (извиняюсь перед всеми читателями-греками).

Каждая единица измерения названа в честь известного экспериментатора в области электричества: ампер в честь француза Андре М. Ампера, вольт в честь итальянца Алессандро Вольта и ом в честь немца Георга Симона Ома.

Математический символ для каждой величины также имеет значение. «R» для сопротивления и «V» для напряжения говорят сами за себя, тогда как «I» для тока кажется немного странным. Считается, что «I» означает «интенсивность» (потока заряда), а другой символ напряжения, «E», означает «электродвижущая сила». Судя по тому исследованию, которое мне удалось провести, есть некоторые разногласия по поводу значения «я».

Символы «E» и «V» по большей части взаимозаменяемы, хотя в некоторых текстах буква «E» резервируется для обозначения напряжения на источнике (например, батареи или генератора), а «V» — для обозначения напряжения на чем-либо еще.

Все эти символы обозначаются заглавными буквами, за исключением случаев, когда величина (особенно напряжение или ток) описывается в терминах короткого периода времени (называемого «мгновенным» значением). Например, напряжение батареи, стабильное в течение длительного периода времени, будет обозначаться заглавной буквой «Е», а пик напряжения удара молнии в тот момент, когда она попадает в линию электропередач, скорее всего, будет обозначаться символом со строчной буквой «e» (или строчной «v»), чтобы обозначить это значение как значение в один момент времени.

То же соглашение о строчных буквах применимо и к текущему: строчная буква «i» представляет ток в некоторый момент времени. Однако большинство измерений постоянного тока (DC), будучи стабильными во времени, будут обозначены заглавными буквами.

Кулон и электрический заряд

Одной из основных единиц электрических измерений, которую часто изучают в начале курсов по электронике, но редко используют позже, является единица измерения кулона , которая является мерой электрического заряда, пропорциональной количеству электронов в несбалансированном состоянии.Один кулон заряда равен 6 250 000 000 000 000 000 электронов.

Обозначение количества электрического заряда — заглавная буква «Q», а единица измерения кулонов — заглавная буква «С». Так случилось, что единица измерения тока, ампер, равна 1 кулону заряда, проходящего через данную точку цепи за 1 секунду. В этих терминах ток — это скорость движения электрического заряда через проводник.

Как указывалось ранее, напряжение является мерой потенциальной энергии на единицу заряда , доступной для мотивации протекания тока из одной точки в другую.Прежде чем мы сможем точно определить, что такое «вольт», мы должны понять, как измерить эту величину, которую мы называем «потенциальной энергией». Общей метрической единицей энергии любого вида является джоуль , что равно количеству работы, выполняемой силой в 1 ньютон при движении на 1 метр (в том же направлении).

В имперских единицах это чуть меньше 3/4 фунта силы, приложенной на расстоянии 1 фута. Проще говоря, требуется около 1 джоуля энергии, чтобы поднять груз массой 3/4 фунта на 1 фут от земли или протащить что-либо на расстояние 1 фут, используя параллельную тяговую силу 3/4 фунта.В этих научных терминах 1 вольт равен 1 джоулю потенциальной электрической энергии на 1 кулон заряда (деленный на). Таким образом, 9-вольтовая батарея высвобождает 9 джоулей энергии на каждый кулон заряда, перемещаемого по цепи.

Эти единицы и символы для электрических величин станут очень важными для понимания, когда мы начнем исследовать взаимосвязь между ними в цепях.

 

Уравнение закона Ома

Основное открытие Ома заключалось в том, что количество электрического тока, протекающего через металлический проводник в цепи, прямо пропорционально приложенному к нему напряжению при любой заданной температуре.Ом выразил свое открытие в виде простого уравнения, описывающего взаимосвязь между напряжением, током и сопротивлением:

 

 

В этом алгебраическом выражении напряжение (E) равно силе тока (I), умноженной на сопротивление (R). Используя методы алгебры, мы можем преобразовать это уравнение в два варианта, решив для I и R соответственно:

 

 

Анализ простых цепей с помощью закона Ома

Давайте посмотрим, как эти уравнения могут помочь нам анализировать простые схемы:

 

 

В приведенной выше схеме имеется только один источник напряжения (батарея слева) и только один источник сопротивления току (лампа справа). Это позволяет очень легко применять закон Ома. Если нам известны значения любых двух из трех величин (напряжение, ток и сопротивление) в этой цепи, мы можем использовать закон Ома для определения третьей.

В этом первом примере мы рассчитаем величину тока (I) в цепи при заданных значениях напряжения (E) и сопротивления (R):

 

 

Какова сила тока (I) в этой цепи?

 

 

Во втором примере мы рассчитаем величину сопротивления (R) в цепи при заданных значениях напряжения (E) и тока (I):

 

 

Каково сопротивление (R) лампы?

 

 

В последнем примере мы рассчитаем величину напряжения, выдаваемого батареей, при заданных значениях тока (I) и сопротивления (R):

 

 

Какое напряжение обеспечивает батарея?

 

Техника треугольника закона Ома

Закон Ома — очень простой и полезный инструмент для анализа электрических цепей. Он так часто используется при изучении электричества и электроники, что серьезный студент должен запомнить его. Для тех, кто еще не освоился с алгеброй, есть хитрость, позволяющая запомнить, как решать любую одну величину, зная две другие.

Сначала расположите буквы E, I и R в виде треугольника:

 

 

Если вы знаете E и I и хотите определить R, просто уберите R с картинки и посмотрите, что осталось:

 

 

Если вы знаете E и R и хотите определить I, исключите I и посмотрите, что осталось:

 

 

Наконец, если вы знаете I и R и хотите определить E, исключите E и посмотрите, что осталось:

 

 

В конце концов, чтобы серьезно изучать электричество и электронику, вам придется познакомиться с алгеброй, но этот совет может облегчить запоминание ваших первых вычислений.Если вы хорошо разбираетесь в алгебре, все, что вам нужно сделать, это запомнить E=IR и вывести из нее две другие формулы, когда они вам понадобятся!

 

ОБЗОР:

  • Напряжение измеряется в вольт , обозначается буквами «E» или «V».
  • Ток измеряется в амперах , что обозначается буквой «I».
  • Сопротивление измеряется в Ом , обозначается буквой «R».
  • Закон Ома: E = IR ; я = Э/Р; Р = Э/И

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Попробуйте наш калькулятор закона Ома в разделе «Инструменты».

Напряжение, ток, сопротивление и закон Ома

Избранное Любимый 121

Основы электричества

Приступая к изучению мира электричества и электроники, очень важно начать с понимания основ напряжения, силы тока и сопротивления. Это три основных строительных блока, необходимых для управления электричеством и его использования. Поначалу эти концепции может быть трудно понять, потому что мы не можем их «видеть».Нельзя невооруженным глазом увидеть энергию, текущую по проводу, или напряжение батареи, лежащей на столе. Даже молния в небе, хотя и видимая, на самом деле является не обменом энергией, происходящим от облаков к земле, а реакцией воздуха на проходящую через него энергию. Чтобы обнаружить эту передачу энергии, мы должны использовать инструменты измерения, такие как мультиметры, анализаторы спектра и осциллографы, чтобы визуализировать то, что происходит с зарядом в системе. Не бойтесь, однако, этот учебник даст вам общее представление о напряжении, токе и сопротивлении и о том, как они связаны друг с другом.

Георг Ом

Описано в этом руководстве

  • Как электрический заряд связан с напряжением, током и сопротивлением.
  • Что такое напряжение, ток и сопротивление.
  • Что такое закон Ома и как с его помощью понять электричество.
  • Простой эксперимент для демонстрации этих концепций.

Рекомендуемая литература

Электрический заряд

Электричество — это движение электронов. Электроны создают заряд, который мы можем использовать для совершения работы. Ваша лампочка, ваша стереосистема, ваш телефон и т. д. используют движение электронов для выполнения работы. Все они работают, используя один и тот же основной источник энергии: движение электронов.

Три основных принципа этого руководства можно объяснить, используя электроны, или, точнее, создаваемый ими заряд:

  • Напряжение – это разница заряда между двумя точками.
  • Ток — это скорость, с которой течет заряд.
  • Сопротивление — это способность материала сопротивляться потоку заряда (току).

Итак, когда мы говорим об этих значениях, мы на самом деле описываем движение заряда и, таким образом, поведение электронов. Цепь представляет собой замкнутый контур, который позволяет заряду перемещаться из одного места в другое. Компоненты в цепи позволяют нам контролировать этот заряд и использовать его для выполнения работы.

Георг Ом — баварский ученый, изучавший электричество. Ом начинается с описания единицы сопротивления, которая определяется током и напряжением.Итак, давайте начнем с напряжения и пойдем оттуда.

Напряжение

Мы определяем напряжение как количество потенциальной энергии между двумя точками цепи. Одна точка имеет больший заряд, чем другая. Эта разница заряда между двумя точками называется напряжением. Он измеряется в вольтах, что технически представляет собой разность потенциалов между двумя точками, которые передают один джоуль энергии на кулон проходящего через них заряда (не паникуйте, если это не имеет смысла, все будет объяснено).Единица «вольт» названа в честь итальянского физика Алессандро Вольта, который изобрел то, что считается первой химической батареей. Напряжение обозначается в уравнениях и схемах буквой «V».

При описании напряжения, тока и сопротивления часто используется аналогия с резервуаром для воды. В этой аналогии заряд представлен количеством воды , напряжение представлен давлением воды , а ток представлен потоком воды . Итак, для этой аналогии запомните:

  • Вода = заправка
  • Давление = Напряжение
  • Поток = Текущий

Рассмотрим резервуар для воды на определенной высоте над землей.На дне этого бака есть шланг.

Давление на конце шланга может представлять собой напряжение. Вода в баке представляет собой заряд. Чем больше воды в баке, тем выше заряд, тем большее давление измеряется на конце шланга.

Мы можем думать об этом резервуаре как о батарее, месте, где мы храним определенное количество энергии, а затем высвобождаем ее. Если мы спустим наш бак на определенное количество, давление, создаваемое на конце шланга, упадет. Мы можем думать об этом как об уменьшении напряжения, например, когда фонарик тускнеет, когда батарейки садятся. Также уменьшается количество воды, протекающей через шланг. Меньшее давление означает, что течет меньше воды, что приводит нас к течению.

Текущий

Количество воды, вытекающей из бака по шлангу, можно представить как ток. Чем выше давление, тем выше расход, и наоборот. В случае с водой мы бы измерили объем воды, протекающей через шланг за определенный период времени.18 электронов (1 кулон) в секунду проходят через точку цепи. Усилители представлены в уравнениях буквой «I».

Допустим, у нас есть два бака, к каждому из которых подходит шланг снизу. В каждом баке одинаковое количество воды, но шланг одного бака уже, чем шланг другого.

Мы измеряем одинаковое давление на конце любого шланга, но когда вода начнет течь, расход воды в баке с более узким шлангом будет меньше, чем расход воды в баке с более широкий шланг. В электрических терминах ток через более узкий шланг меньше, чем ток через более широкий шланг. Если мы хотим, чтобы поток через оба шланга был одинаковым, мы должны увеличить количество воды (зарядку) в баке с более узким шлангом.

Это увеличивает давление (напряжение) на конце более узкого шланга, проталкивая больше воды через резервуар. Это аналогично увеличению напряжения, которое вызывает увеличение тока.

Теперь мы начинаем видеть взаимосвязь между напряжением и током.Но здесь следует учитывать третий фактор: ширину шланга. В этой аналогии ширина шланга является сопротивлением. Это означает, что нам нужно добавить еще один член в нашу модель:

.
  • Вода = заряд (измеряется в кулонах)
  • Давление = Напряжение (измеряется в вольтах)
  • Поток = Ток (измеряется в Амперах или для краткости «Амперах»)
  • Ширина шланга = сопротивление

Сопротивление

Рассмотрим еще раз наши два резервуара для воды, один с узкой трубой, а другой с широкой трубой.

Само собой разумеется, что мы не можем пропустить через узкую трубу столько же объема, сколько через более широкую при том же давлении. Это сопротивление. Узкая труба «сопротивляется» потоку воды через нее, хотя вода находится под тем же давлением, что и резервуар с более широкой трубой.

В электрических терминах это представлено двумя цепями с одинаковыми напряжениями и разными сопротивлениями. Цепь с более высоким сопротивлением позволит протекать меньшему заряду, а это означает, что через цепь с более высоким сопротивлением протекает меньший ток.18 электронов. Это значение обычно обозначается на схемах греческой буквой «Ω», которая называется омега и произносится как «ом».

Закон Ома

Объединив элементы напряжения, силы тока и сопротивления, Ом вывел формулу:

Где

  • В = напряжение в вольтах
  • I = ток в амперах
  • R = сопротивление в омах

Это называется законом Ома. Допустим, например, что у нас есть цепь с потенциалом 1 вольт, током 1 ампер и сопротивлением 1 Ом. Используя закон Ома, мы можем сказать:

Допустим, это наш бак с широким шлангом. Количество воды в баке определяется как 1 вольт, а «узость» (сопротивление течению) шланга определяется как 1 Ом. Используя закон Ома, это дает нам поток (ток) в 1 ампер.

Используя эту аналогию, давайте теперь посмотрим на бак с узким шлангом. Поскольку шланг уже, его сопротивление потоку выше.Определим это сопротивление как 2 Ом. Количество воды в резервуаре такое же, как и в другом резервуаре, поэтому, используя закон Ома, наше уравнение для резервуара с узким шлангом равно

.

Но какой ток? Поскольку сопротивление больше, а напряжение такое же, это дает нам значение тока 0,5 ампер:

Значит, в баке с большим сопротивлением ток меньше. Теперь мы можем видеть, что если мы знаем два значения закона Ома, мы можем найти третье.Продемонстрируем это на эксперименте.

Эксперимент по закону Ома

В этом эксперименте мы хотим использовать 9-вольтовую батарею для питания светодиода. Светодиоды хрупкие, и через них может протекать только определенное количество тока, прежде чем они сгорят. В документации на светодиод всегда будет «номинальный ток». Это максимальное количество тока, которое может протекать через конкретный светодиод, прежде чем он перегорит.

Необходимые материалы

Для проведения экспериментов, перечисленных в конце руководства, вам потребуется:

ПРИМЕЧАНИЕ. Светодиоды — это так называемые «неомические» устройства.Это означает, что уравнение для тока, протекающего через сам светодиод, не так просто, как V=IR. Светодиод вносит в цепь то, что называется «падением напряжения», тем самым изменяя величину тока, протекающего через нее. Однако в этом эксперименте мы просто пытаемся защитить светодиод от перегрузки по току, поэтому мы пренебрежем токовыми характеристиками светодиода и выберем значение резистора, используя закон Ома, чтобы быть уверенным, что ток через светодиод безопасно ниже 20 мА.

В этом примере у нас есть 9-вольтовая батарея и красный светодиод с номинальным током 20 миллиампер или 0.020 ампер. Чтобы быть в безопасности, мы бы предпочли не управлять светодиодом с его максимальным током, а скорее рекомендуемым током, который указан в его спецификации как 18 мА или 0,018 ампер. Если мы просто подключим светодиод напрямую к батарее, значения закона Ома будут выглядеть так:

поэтому:

и так как у нас пока нет сопротивления:

Деление на ноль дает нам бесконечный ток! Ну, на практике не бесконечный, а столько тока, сколько может выдать батарея. Поскольку мы НЕ хотим, чтобы через наш светодиод протекал такой большой ток, нам понадобится резистор.Наша схема должна выглядеть так:

Точно так же мы можем использовать закон Ома для определения номинала резистора, который даст нам желаемое значение тока:

поэтому:

подставляем наши значения:

решение для сопротивления:

Итак, нам нужен резистор номиналом около 500 Ом, чтобы поддерживать ток через светодиод ниже максимального номинального тока.

500 Ом не является обычным значением для стандартных резисторов, поэтому в этом устройстве вместо него используется резистор на 560 Ом.Вот как выглядит наше устройство в собранном виде.

Успех! Мы выбрали сопротивление резистора, достаточно высокое, чтобы ток через светодиод оставался ниже его максимального номинала, но достаточно низкое, чтобы тока было достаточно, чтобы светодиод оставался красивым и ярким.

Этот пример со светодиодом и токоограничивающим резистором часто встречается в любительской электронике. Вам часто придется использовать закон Ома, чтобы изменить величину тока, протекающего через цепь. Другой пример этой реализации можно увидеть в светодиодных платах LilyPad.

При такой настройке вместо выбора резистора для светодиода резистор уже встроен в светодиод, поэтому ограничение тока выполняется без необходимости добавления резистора вручную.

Ограничение тока до или после светодиода?

Чтобы немного усложнить ситуацию, вы можете разместить токоограничивающий резистор с любой стороны светодиода, и он будет работать точно так же!

Многие люди, впервые изучающие электронику, сомневаются в том, что токоограничивающий резистор может располагаться с любой стороны светодиода, и схема будет работать как обычно.

Представьте себе реку в непрерывной петле, бесконечную, круговую, текущую реку. Если бы мы поместили в нем плотину, вся река перестала бы течь, а не только один берег. Теперь представьте, что мы помещаем в реку водяное колесо, которое замедляет течение реки. Неважно, в каком месте круга находится водяное колесо, оно все равно замедлит течение всей реки .

Это упрощение, так как токоограничивающий резистор не может быть размещен где-либо в цепи ; его можно разместить на с любой стороны светодиода для выполнения своей функции.

Для более научного ответа обратимся к закону Кирхгофа о напряжении. Именно из-за этого закона токоограничивающий резистор может располагаться с любой стороны светодиода и при этом иметь тот же эффект. Для получения дополнительной информации и решения некоторых практических задач по использованию KVL посетите этот веб-сайт.

Ресурсы и продолжение

Теперь вы должны понимать, что такое напряжение, ток, сопротивление и как они связаны между собой. Поздравляем! Большинство уравнений и законов для анализа цепей можно вывести непосредственно из закона Ома.Зная этот простой закон, вы понимаете концепцию, лежащую в основе анализа любой электрической цепи!

Эти концепции — лишь верхушка айсберга. Если вы хотите продолжить изучение более сложных приложений закона Ома и проектирования электрических цепей, обязательно ознакомьтесь со следующими учебными пособиями.

Закон Ома и схемы

Основной закон Ома и схемы

В этой лабораторной работе мы обнаружим взаимосвязь между напряжением, сопротивлением и током, а затем изучим правила которые управляют различными конфигурациями цепей.

Начнем с блока питания. Для сегодняшней лаборатории мы можем рассматривать его как источник напряжения, то есть его работа для вывода определенного напряжения независимо от того, что к нему подключено. Думайте об этом как о причудливой батарее, которую вы можете подключить в стену. Следующее, на что нужно обратить внимание, это резистор. Мы рассмотрели их в некоторых вводных лабораторных работах и мы вернемся и посмотрим на них снова сегодня. Как следует из названия, резистор с большим значением будет очень полезен. хорошая работа по сопротивлению потоку электричества.Этот поток тоже имеет название, его называют током.

Настройте источник напряжения на четыре вольта. Установите цифровой мультиметр на напряжение и выполните прямое измерение. Когда ты проверьте 4 вольта, снимите цифровой мультиметр и настройте его на измерение тока (мА). Возьмите на выбор 6 или 7 резисторов, не менее 100 Ом. Подключите один резистор к источнику питания и цифровому мультиметру. Один провод должен идти от блока питания к резистору, то другой конец резистора должен идти к цифровому мультиметру, а цифровой мультиметр должен замыкать петлю и возвращаться обратно к источнику питания.Преподаватель лаборатории покажет вам одну из этих схем на лекции перед лабораторией. Измерьте ток через резистор на четыре вольта. Включите остальные резисторы один за другим. Вы видите подтверждение имя? Когда вы получаете более высокие сопротивления, вы получаете более низкие токи?

Постройте кривую зависимости токов от сопротивления, как будет выглядеть график? Надеюсь, это подтверждает следующее уравнение:

ΔV = I R

Это известно как закон Ома.Мы можем проверить это, выбрав три резистора, каждый из которых больше 1000 Ом, а затем начертить I, как мы варьировать ΔV. Это должны быть красивые прямые линии. Склоны соответствуют вашим ожиданиям?

Цепи с несколькими резисторами
Следующее, на что следует обратить внимание, это то, что происходит с ситуацией, когда мы добавляем больше или больше резисторов к тому, что у нас уже есть. Начните с самой основной проблемы, как второй резистор влияет на схему? Оказывается, это более сложный проблема, чем можно подумать, так как есть два способа добавить второй резистор.Давайте рассмотрим каждый из них по очереди.

В нашей исходной схеме с одним резистором источник питания подключен к резистору. Давайте решим, что мы хотим измерить ток, выходящий из источника питания, поэтому мы вставляем цифровой мультиметр в качестве амперметра между источником питания и резистором. Теперь добавим второй резистор и посмотрим, как это повлияет на ток в цепи. Как подключить второй резистор? Подключите второй резистор так, чтобы кончики двух резисторов были соединены друг с другом, а хвосты — с друг друга.Поскольку это приведет к тому, что резисторы выстроятся бок о бок, это называется параллельной схемой. Текущий от источника питания подниматься, опускаться или оставаться на прежнем уровне? Означает ли это, что сопротивление в цепи то увеличивалось, то уменьшалось, или остался прежним?

Это еще один способ подключения второго резистора. Отсоедините первую цепь и вместо этого подключите «наконечник» второй. резистор и к «хвосту» первого. Это называется последовательным соединением. Ваш ток идет вверх или вниз, или остается такой же? Означает ли это, что сопротивление в цепи увеличилось, уменьшилось или осталось прежним?

Теперь мы должны исследовать эти случаи более подробно. Поскольку в настоящее время у нас подключена последовательная цепь, мы можем начать с нее. Удалите цифровой мультиметр из схемы, чтобы использовать его в качестве измерителя напряжения. После того, как цепь будет пересоединена, измерьте напряжение на источник питания. Затем измерьте напряжение на каждом резисторе. Сделайте ваши результаты напряжений через комбинацию резисторы имеет смысл сравнивать с напряжением на блоке питания? Имеют ли значение напряжения на каждом резисторе? по сравнению с током в цепи? Объяснять.Добавьте последовательно третий резистор, и прежде чем делать какие-либо измерения, предсказать, что вы найдете. Соответствуют ли ваши измерения вашим прогнозам? Можете ли вы определить правило поведения напряжения? Как работает ток в цепи? Как сопротивления объединяются, чтобы сформировать общее сопротивление цепи?


Рис. 1. Измерение тока в последовательной цепи

Теперь давайте вернемся и применим ту же логику к параллельной схеме.Соберите параллельную цепь с двумя резисторами. Возьмите Цифровой мультиметр и проверьте напряжение на источнике питания и на каждом из резисторов. Что такое шаблон? Используйте закон Ома для предсказания ток через каждый резистор. Измерьте ток, подключив цифровой мультиметр в качестве амперметра после каждого резистора (следя за тем, чтобы измерять ток только от этого резистора, а не от комбинации). Имеет ли ответ смысл? Теперь измерьте ток от блока питания, это тоже имеет смысл учитывая токи через каждый резистор? Добавьте третий резистор в параллели? Какое напряжение на нем будет? Какой будет ток через него? Можете ли вы найти правила, описывающие напряжение, ток и комбинированное сопротивление в параллельных цепях?


Рис. 2. Измерение тока в параллельной цепи

Запишите свои наблюдения и выводы в лабораторную тетрадь.

Закон

Ома: определение и взаимосвязь между напряжением, током и сопротивлением — видео и стенограмма урока

Закон Ома

Связь между напряжением, током и сопротивлением описывается Законом Ома . Это уравнение i = v / r говорит нам, что ток i , протекающий через цепь, прямо пропорционален напряжению, v , и обратно пропорционален сопротивлению, r . .Другими словами, если мы увеличим напряжение, то увеличится и ток. Но, если мы увеличим сопротивление, то ток уменьшится. Мы видели эти концепции в действии с садовым шлангом. Увеличение давления вызвало увеличение потока, но изгиб шланга увеличил сопротивление, что привело к уменьшению потока.

Использование этой диаграммы — простой способ решения уравнений.

То, как здесь написано уравнение, было бы легко использовать закон Ома, чтобы вычислить силу тока, если бы мы знали напряжение и сопротивление.Но что, если бы вместо этого мы захотели найти напряжение или сопротивление? Один из способов сделать это — переставить члены уравнения для решения других параметров, но есть и более простой способ. Приведенная выше диаграмма даст нам соответствующее уравнение для решения любого неизвестного параметра без использования какой-либо алгебры. Чтобы использовать эту диаграмму, мы просто скрываем параметр, который пытаемся найти, чтобы получить правильное уравнение. Это будет иметь больше смысла, как только мы начнем его использовать, поэтому давайте сделаем несколько примеров.

Закон Ома в действии

Ниже приведена простая электрическая цепь, которую мы будем использовать в наших примерах. Наш источник напряжения — это батарея, которая подключена к лампочке, которая обеспечивает сопротивление электрическому току. Для начала предположим, что наша батарея имеет напряжение 10 вольт, лампочка имеет сопротивление 20 Ом, и нам нужно вычислить ток, протекающий по цепи. Используя нашу диаграмму, мы скрываем параметр, который пытаемся найти, то есть ток, или х , и остается напряжение х на сопротивлении х .Другими словами, чтобы найти ток, нам нужно напряжение разделить на сопротивление. Делая математику, 10 вольт, деленные на 20 Ом, дают полампера тока, протекающего в цепи.

Чтобы найти силу тока, разделите напряжение (20 вольт) на сопротивление (20 Ом).

Теперь давайте увеличим напряжение, чтобы посмотреть, что произойдет с током. Мы будем использовать ту же лампочку, но переключимся на 20-вольтовую батарею.Используя то же уравнение, что и раньше, мы делим 20 вольт на 20 Ом и получаем 1 ампер тока. Как мы видим, удвоение напряжения привело к удвоению тока. Это имеет смысл, когда мы думаем о садовом шланге. Если мы увеличим давление в шланге, мы ожидаем, что поток воды также увеличится. Всегда полезно перепроверить свою работу, спросив, соответствуют ли результаты ожидаемому результату.

Если мы увеличим сопротивление лампочки, что, по вашему мнению, произойдет с током? Чтобы выяснить это, давайте заменим нашу существующую лампочку на другую с сопротивлением 40 Ом. Поскольку мы все еще ищем ток, мы используем то же уравнение, что и раньше. Разделив 20 вольт на 40 Ом, мы получим полампера тока. Этот результат говорит нам о том, что удвоение сопротивления уменьшило ток вдвое. Это то, что вы ожидали? Возвращаясь к нашему шлангу, становится понятно, что изгиб шланга уменьшит поток воды, точно так же, как увеличение сопротивления в цепи уменьшит ток.

До сих пор мы вычисляли только ток в цепи, но что, если бы кто-то заменил нашу лампочку, пока мы не видели, и нам нужно было бы вычислить сопротивление новой? Что ж, мы знаем, что напряжение нашей батареи составляет 20 вольт, и мы можем измерить ток в цепи с помощью инструмента, называемого амперметром, поэтому все, что осталось, — это выполнить некоторые математические расчеты.Используя нашу диаграмму, мы скрываем параметр, который пытаемся найти, а именно сопротивление, r . Диаграмма теперь показывает нам, что нам нужно разделить напряжение на ток. Если наш амперметр измерил ток 5 ампер, протекающий по цепи, то сопротивление равно 20 вольтам, деленным на 5 ампер, что равно 4 омам

Чтобы определить напряжение, умножьте силу тока (3 ампера) на сопротивление (4 Ом).

Наконец, представьте, что кто-то заменил нашу батарею, и нам нужно выяснить ее напряжение.Процесс почти такой же. Мы знаем, что наша новая лампочка имеет сопротивление 4 Ом, и мы можем измерить ток в цепи с помощью амперметра. Используя диаграмму, мы скрываем напряжение, v , что говорит нам о том, что нам нужно умножить ток на сопротивление. Если бы амперметр измерил ток в 3 ампера, то напряжение было бы 3 ампера, умноженное на 4 Ом, что составляет 12 вольт. Вот и все. Зная любые два из трех параметров, мы всегда можем вычислить третий, используя закон Ома.

Резюме урока

Закон Ома определяет соотношение между напряжением, током и сопротивлением в электрической цепи: i = v / r . Ток прямо пропорционален напряжению и обратно пропорционален сопротивлению. Это означает, что увеличение напряжения приведет к увеличению тока, а увеличение сопротивления приведет к уменьшению тока. Знание любых двух из трех параметров позволяет вычислить третий, неизвестный параметр.Мы можем сделать это, переставив члены в уравнении закона Ома или используя диаграмму, найденную выше в уроке. Сокрытие параметра, который мы пытаемся найти, показывает нам соответствующее уравнение, использующее два известных параметра.

Результаты обучения

По завершении этого урока вы сможете:

  • Описывать зависимость между напряжением, током и сопротивлением, используя закон Ома
  • Напишите уравнение закона Ома
  • Объясните, как найти любую из трех переменных в уравнении закона Ома, если известны две другие
  • Рассчитайте любую из трех переменных, используя уравнение закона Ома
Закон

Ома для простых электрических цепей Рона Куртуса

SfC Главная > Физика > Электричество >

Рона Куртуса (обновлено 23 октября 2019 г.)

Закон Ома является наиболее фундаментальной формулой для простых электрических цепей . Он гласит, что электрический ток, проходящий через проводник, прямо пропорционален разности потенциалов на проводнике. Впервые он был сформулирован в 1827 году немецким физиком Георгом Омом во время экспериментов по изучению того, насколько хорошо металлы проводят электричество.

Закон Ома лучше всего проявляется в простой электрической цепи постоянного тока. Хотя это также применимо к цепям переменного тока, необходимо учитывать другие возможные переменные.

Соотношение между током, напряжением и сопротивлением в цепи позволяет вычислить одну переменную, если вы знаете значения двух других.

Возможные вопросы:

  • Что означают параметры в уравнении?
  • Какая конфигурация цепи?
  • Как вы применяете закон Ома?

Этот урок ответит на эти вопросы. Полезный инструмент: Преобразование единиц



Уравнение

Закон Ома показывает взаимосвязь между напряжением, током и сопротивлением в простой электрической цепи. Самая простая форма уравнения:

В = ИК

где:

  • В — напряжение в вольтах ( В )
  • I ток в амперах или амперах ( А )
  • R сопротивление в омах ( Ω — греческая буква омега)

Таким образом, если известны ток и сопротивление, можно использовать формулу для нахождения напряжения.

Используя Алгебру, вы можете изменить порядок переменных в соответствии с вашими потребностями. Например, если вы знаете напряжение и сопротивление и хотите найти ток, вы можете использовать:

И = В/Р

Или, если вы знаете напряжение и ток и хотите найти сопротивление, вы можете использовать:

Р = В/И

Конфигурация

Простая электрическая цепь состоит из металлических проводов, идущих к источнику питания и от него, а также источника сопротивления, такого как резисторы или лампочка, соединенные последовательно с источником. Типичным источником питания является батарея постоянного тока, хотя также может применяться генератор постоянного или переменного тока.

Примечание : Если цепь переменного тока включает такие компоненты, как конденсаторы или катушки индуктивности, закон Ома не применяется.

Простая цепь постоянного тока

Используя уравнение

Важность закона Ома заключается в том, что если вы знаете значение двух переменных в уравнении, вы можете определить третью. Вы можете измерить любой из параметров с помощью вольтметра.Большинство вольтметров или мультиметров измеряют напряжение, ток и сопротивление как для переменного, так и для постоянного тока.

Найти напряжение

Если известны ток и сопротивление, можно найти напряжение из В = I R . Например, если ток I = 0,2 А и сопротивление R = 1000 Ом , то

В = 0,2 А * 1000 Ом = 200 В

Найти текущий

Если вы знаете напряжение и сопротивление, вы можете использовать алгебру, чтобы изменить уравнение на I = V / R , чтобы найти ток. Например, если В = 110 В и R = 22000 Ом , то

I = 110 В / 22000 Ом = 0,005 А

Найти сопротивление

Если вы знаете напряжение и ток, вы можете использовать алгебру, чтобы изменить уравнение на R = V / I , чтобы найти сопротивление. Если В = 220 В и I = 5 А , то

R = 220 В / 5 А = 44 Ом

Резюме

Закон Ома представляет собой уравнение V = I R , которое показывает взаимосвязь между напряжением, током и сопротивлением в простой электрической цепи.Он может применяться как к цепям переменного, так и постоянного тока.


Будьте полны решимости сделать все возможное


Ресурсы и ссылки

Полномочия Рона Куртуса

веб-сайтов

Немного истории об Оме — Краткая история

Закон Ома — Объяснение, включая калькулятор закона Ома

Основные законы электротехники – включает теорию электрических цепей

Формулы электрических цепей — Уравнения высокого уровня для решения задач

Источники электроэнергии постоянного и переменного тока

Ресурсы по физике

Книги

(Примечание: Школа чемпионов может получать комиссионные от покупки книг)

Научитесь электричеству и электронике Стэн Гибилиско; Макгроу-Хилл; (2001) 34 доллара. 95 — Руководство для профессионалов, любителей и техников, желающих изучить схемы переменного и постоянного тока


Поделиться этой страницей

Нажмите кнопку, чтобы добавить эту страницу в закладки или поделиться ею через Twitter, Facebook, электронную почту или другие службы:


Студенты и исследователи

Веб-адрес этой страницы:
www.school-for-champions.com/science/
electric_ohms_law.htm

Разместите его в качестве ссылки на своем веб-сайте или в качестве ссылки в своем отчете, документе или диссертации.

Copyright © Ограничения


Где ты сейчас?

Школа чемпионов

Темы физики

Закон Ома для простых электрических цепей

Закон Ома, диагностика проблем современных автомобилей

Понимание вашего Проблемы с автомобилем могут быть довольно сложными. Однако изучение основ диагностики в Условия закона Ома могут сделать поиск и устранение неисправностей вашего автомобиля интересным. Просто положите, закон Ома может помочь вам объяснить причину электрической неисправности вашего автомобиля может иметь.

В этом посте вы узнать, что такое закон Ома; и как этот принцип можно использовать в вашем автомобиле диагностическое тестирование.

Итак, что такое Ом? закон? Рис. 1-1 Требуется 1 вольт, чтобы протолкнуть 1 ампер через сопротивление 1 ом.

Закон Ома описывает взаимосвязь между тремя характеристиками электрическая цепь: поток электронов, сопротивление потоку в проводе или другой проводник и напряжение.В законе указано, что сила тока в проводнике между двумя точками прямо пропорциональна напряжение в двух точках.

Это закон объясняет, почему одни схемы работают нормально, а другие имеют проблемы. Для Например, лампа, обеспечивающая освещение ниже номинала, может иметь Проблема, вызванная чрезмерным сопротивлением в электрической цепи. Следовательно, использование закона Ома может помочь нам предсказать и объяснить, что происходит в такая электрическая система. Основываясь на том, что мы знаем об этом законе, когда электрическая цепь не работает должным образом, проблема обычно чрезмерное сопротивление.

В идеале когда система работает нормально, требуется 1 вольт, чтобы протолкнуть 1 ампер через 1 Ом (рис. 1-1) сопротивления. Так с законом Ома, если вы знаете два из трех параметров в уравнении, вы можно вычислить значение недостающего. Например, если вы знаете вольты и усилители, вы можете вывести значение сопротивления, протекающего через схема.

Сейчас что вы знаете, что такое закон Ома, почему этот закон важен при диагностике автомобилей?

В автомобильной системе с 12-вольтовым батареи, ожидается, что если батарея положительная и вы пропустите ее через электрической цепи, к моменту прохождения нагрузки (двигатель, лампочка, и т.п.) и достигает отрицательного полюса батареи, чтобы замкнуть цепь, это будет до нуля вольт.

Испытание на падение напряжения — отличный способ определить состояние клеммы аккумулятора и клеммы. .3v или меньше идеально.

Это Концепция применима при проведении испытаний на падение напряжения. Это тестирование метод является одним из лучших способов найти электрическую неисправность в транспортном средстве. Этот основан на предположении, что напряжение падает по мере прохождения через цепь, так что вы можете сказать, где она используется, просто измерив напряжение в разных точках цепи.

Рис. 1-2 Важно понимать показания контрольных точек. 0 В после ожидаемой нагрузки, потому что используется все доступное напряжение.

Чтобы лучше понять эту концепцию, давайте посмотрите, как машина движется по определенной дороге, где дорога — это электрической цепи и газа, потребляемого автомобилем, является напряжение. Если транспортное средство что оставляет положительный штырь батареи с достаточным количеством газа, чтобы работать с нагрузкой и доходит до минусовой клеммы аккумулятора. К тому времени, когда машина достигает отрицательного аккумуляторный столб, в нем закончился бы бензин. Как уже говорилось, если газ напряжение, и автомобиль заводится на самом высоком уровне на положительном аккумуляторе терминал, это означает, что он окажется на нуле, когда достигнет отрицательного клемма аккумулятора.

Сейчас, давайте рассмотрим интересный сценарий, если где-то на трассе машина делает объезд и идет по другой дороге и решает не идти по дороге (цепь) полностью обратно к отрицательному аккумулятору. Ну, в этом случае мы называем это короткое замыкание. И когда это происходит, можно получить взорванный Плавкий или воспламеняющийся плавкий предохранитель или часть электрической системы.Это как результат неограниченного тока тока, возникающего во время короткого замыкания.

Вот другой сценарий, что делать, если машина встречает препятствие на дороге (контур) и мы расходуем больше газа, преодолевая препятствие на нашем пути обратно к минусу батареи. Теоретически автомобиль все еще может вернуться к отрицательному заряду аккумулятора, но так как мы потратили так много топлива (напряжения) на преодоление сопротивления и нагрузки, почти не осталось топлива для выполнения какой-либо работы.

Часто это происходит, когда у нас есть повышенное сопротивление в автомобильной электрической цепи.Например, если это стеклоподъемник, отвечающий за повышенное сопротивление, стеклоподъемник все равно будет работать; единственная проблема, это будет работать очень медленно. Эффект этого повышенного сопротивления что, когда нам нужно было пройти, чтобы вернуться к отрицательному заряду батареи, мы потратили значительное количество топлива (напряжения), преодолевающее сопротивление в цепи. Так как в результате меньшее количество топлива (напряжения) означает, что его недостаточно для работы мотора стеклоподъемника. на полную мощность.

Земля должна иметь не более .Падение напряжения 2В.

Однако после испытания на падение напряжения путь автомобильной электрической цепи, вы можете обнаружить часть цепь, в которой используется топливо (напряжение). Обычно это рассматривается как наибольшее падение нагрузки цепи, которое в случае более раннего Например, стеклоподъемник.

Как правило, Таким образом, падение напряжения выполняется в цепи под напряжением; можно посмотреть напряжение до и после двигателя (рис. 1-2) . Если цепь не активна, вы не получите никаких показаний.

Падение напряжения на положительной стороне аккумулятора в цепи стартера должно быть 0,2 В или меньше, что является отличным тестом для диагностики медленных запусков. Сторона заземления также должна быть 0,2 В или меньше.

При проверке напряжения после запуска двигатель, напряжение должно быть равно нулю. Это можно увидеть в каждой электрической цепи по закону Ома. Зная схему, вы можете определить, где напряжение расходуется, и это можно сделать, измерив напряжение на различные точки в схема, чтобы понять, как работает схема.

Так Вот и все, испытание на падение напряжения — отличный способ диагностики автомобиля. электрических цепей, но не следует забывать и об основах испытаний, которые Ом закон есть.

Испытание на падение напряжения в цепи генератора должно показывать 0,3 В или меньше, выше этого показания указывает на нежелательное сопротивление в цепи зарядки. .

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.