Химическое строение атома: Тюменский индустриальный университет » Страница не найдена

Содержание

1. Строение атома — Проект «Получи максимальный балл на ОГЭ по химии»

Тема № 1

Строение атома. Строение электронных оболочек атомов первых 20 элементов Периодической системы Д.И. Менделеева

Рекомендуемые видеоуроки

Дополнительные видеоуроки, рекомендованные к просмотру

Теоретические сведения

Атом — это наименьшая частица химического элемента, сохраняющая все его химические свойства [1]. Атом состоит из ядра и вращающихся вокруг него электронов. Ядро также имеет сложное строение и состоит из нейтронов и электронов. 

     Число электронов равно числу протонов в атоме и определяется порядковым номером. В связи с этим атом в целом электронейтрален, так как электроны заряжены отрицательно, а протоны положительно. Заряд ядра также равен порядковому номеру. Число нейтронов рассчитывается по формуле N = A — Z, где N — общее число нейтронов, А — массовое число, Z — заряд ядра. Число энергетических уровней в атоме определяется номером периода. Число электронов на последнем внешнем уровне равно номеру группы.

     Максимальное число электронов на энергетическом уровне определяется формулой N = 2n2 , где N — общее число электронов на энергетическом уровне, n — номер уровня.

     В связи с этим максимальное число электронов на первом (n = 1) уровне   равно 2 (так как N = 2*12), на втором (n = 2) уровне —  8 (так как  N = 2*22), на третьем (n = 3) уровне — 18  (так как N = 2*32) и т.д.

     Каждый энергетический уровень делится на подуровни. На первом уровне только один подуровень — s. На втором уровне два подуровня — s и p. на третьем — s, p и d. На четвертом — s, p, d и f.

Максимальное число электронов на подуровнях

2 — максимальное число электронов на s-подуровне.

6 — максимальное число электронов на p-подуровне.

10 — максимальное число электронов на d-подуровне.

14 — максимальное число электронов на f-подуровне.

Максимальное число электронов на подуровне не зависит от номера уровня.

Заполнение энергетических уровней

1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f < 5d < 6p < 7s

Геометрия орбиталей [2]


Примеры [3]



Использованные интернет-источники

Периодический закон. Химия, 8 класс: уроки, тесты, задания.

1. Металлические свойства

Сложность: лёгкое

1
2. Элементы одного периода

Сложность: лёгкое

1
3. Свойства металлов и неметаллов

Сложность: среднее

1
4. Изменение свойств в периоде

Сложность: среднее

1
5.
Относительные атомные массы

Сложность: среднее

2
6. Сущность и значение Периодического закона

Сложность: среднее

2
7. Высшие валентности элементов

Сложность: сложное

3
8. Установи последовательность элементов

Сложность: сложное

3
9. Общие формулы высших оксидов и водородных соединений

Сложность: сложное

3

Строение атома

Развитие химии во второй половине XIX века происходило на прочной основе Периодического закона. Но в своем основном труде «Основы химии», выдержившем много изданий, Д.И.Менделеев писал: «Периодическая изменяемость простых и сложных тел подчиняется некоторому высшему закону, природу которого, а тем более причину еще нет средства охватить. По всей вероятности, она кроется в основных началах внутренней механики атомов и частиц». Установление физиками сложного строения атомов химических элементов, создание физической теории (квантовой механики), которая выяснила электронное строение атомов, и ядероной физики, которая объяснила строение ядер атомов, все это позволило понять причину периодического изменения свойств химических элементов, уточнить формулировку Периодического закона и структуру Периодической системы химических элементов в ее короткой и длинной формах.

Модели строения атомов в XIX и начале XX века

Химия — наука о веществах и закономерностях их превращений. Молекула — мельчайшая частица вещества, которая обладает его основными химическими свойствами, состоящая из атомов, связанных между собой химическими связями. А из чего состоят атомы? Сейчас это знают все старшеклассники. Атомы химических элементов состоят из положительно заряженного ядра и электронов. Как же наука пришла к такому выводу?

То, что тела могут приобретать положительный или отрицательный заряд в результате трения, люди узнали очень давно. Если опустить электроды, к которым приложена разность потенциалов, в раствор какой-либо соли, то через раствор может протекать электрический ток и на отрицательном электроде (катоде) будет осаждаться, например медь (если это был раствор медного купороса), а на аноде будет выделяться кислород.

Законы электролиза были открыты более 150 лет назад английским ученым Майклом Фарадеем. Изучение физиками в конце прошлого века прохождения электрического тока через разреженные газы привело к открытию катодных лучей и установлению их природы: катодные лучи отклоняются в магнитном поле (потому что несут на себе отрицательный заряд) и представляют собой поток электронов. Результат воздействия катодных лучей на светящийся состав мы наблюдаем на экране телевизора. Из какого бы металла не был изготовлен катод при определенных условиях будут испускаться катодные лучи, следовательно, электроны входят в состав любых атомов. Но кусок металла обычно электронейтрален, поэтому наряду с отрицательно заряженными электронами атомы должны иметь «что-то» положительно заряженное.

Простейшая модель атома была предложена английским ученым Дж.Дж.Томсоном и напоминала сильно уменьшенную «калорийную булочку».


Предполагалось, что положительный заряд равномерно распределен по всему объему атома, а электроны подобны изюминкам, вкрапленным в тело булочки. Атом в целом является электронейтральным, так как положительные и отрицательные заряды уравновешивают друг друга.

В 1895 г. было открыто явление радиоактивности: некоторые вещества (названные радиоактивными) способны излучать невидимые «лучи», которые обладают большой проникающей способностью и могут «засвечивать» завернутую в темную бумагу фотопластинку. Было установлено, что природа этих «лучей» у разных веществ может отличаться, и их классифицировали на a-, b- и g-лучи. Позже было установлено, что a-лучи — это ядра атомов He, b-лучи — поток электронов, а g-лучи — очень «жесткое» рентгеновское излучение.

Изучая законы прохождения a-лучей через золотую фольгу (золотая фольга может быть столь тонкой, что становится прозрачной), Эрнст Резерфорд — английский ученый — на основе статистического анализа распределения двух миллионов «вспышек» (сцинцилляций) на экране, покрытом слоем ZnS, пришел к выводу, что вся масса атома, несущая положительный заряд, сосредоточена в очень малом объеме. Так было открыто наличие положительного ядра у атомов химических элементов. Электроны двигаются в пространстве вокруг ядра атома и электронная оболочка определяет пространственные размеры атомов. Иногда говорят о планетарной модели строения атома и называют ее «Моделью Резерфорда». Рассмотрим доводы «за» и «против».

По закону всемирного тяготения Ньютона на планету со стороны Солнца действует сила притяжения:


Все тела, которые не обладали орбитальной скоростью движения по отношению к Солнцу, под действием силы тяготения упали на Солнце. При возникновении Солнечной системы планеты приобрели орбитальную скорость. Если бы не было притяжения со стороны Солнца или если бы эта сила оказалась недостаточной, то планеты ушли бы из Солнечной системы. В Солнечной системе в качестве планет остались лишь те тела, для которых сила тяготения является центростремительной силой, сообщающей планете центростремительное ускорение. При этом изменяется лишь направление орбитальной скорости, а центростремительная сила не производит работы, поэтому такая система может существовать миллиарды лет.

Если теперь рассмотреть простейший одноэлектронный атом — атом водорода, то на электрон со стороны ядра действует не только гравитационная сила:


по закону всемирного притяжения масс, но и кулоновская сила:


Зная массы протона и электрона, зная заряды электрона и протона, легко сравнить эти силы. Кулоновская сила превосходит гравитационную в 1039 раз, поэтому последнюю можно не принимать во внимание. Итак, роль центростремительной силы в атоме играет кулоновская сила и «чтобы не упасть на ядро» электрон должен иметь орбитальную скорость. В отличие от планеты электрон несет чудовищный заряд (в расчете на единицу массы) и при вращении вокруг ядра создает переменное магнитное поле, которое, в свою очередь, порождает переменное электрическое поле. Генерируемое электроном электромагнитное поле невозможно локализовать, распространяясь в пространстве, оно будет уносить кинетическую энергию электрона и за ничтожную долю секунды электрон должен будет упасть на ядро атома («атомная катастрофа»).

Итак, Э.Резерфорд доказал существование ядра атома на основе анализа статистического распределения a-частиц после их прохождения через золотую фольгу. Как доказательство статистические закономерности использовались впервые и поэтому вызывали большие сомнения. Планетарная модель строения атома противоречила законам классической электродинамики. Нужны были новые доказательства.

В 1913 г. в лабораторию к Э.Резерфорду приехал стажер из Дании — Нильс Бор. Он ознакомился с работами Э.Резерфорда и вернулся на родину, ему попался на глаза школьный учебник физики, на обложке которого был изображен спектр атомарного водорода. Более того, школьному учителю физики Бальмеру удалось в аналитической форме выразить закономерность расположения линий в спектре атомарного водорода:



-константа Ридберга, а m — принимает значения 3, 4, 5…

Почему спектр дискретный? К этому времени ученые накопили очень большое количество зарисованных и заснятых на фотопластинку  линейчатых (атомарных) и полосатых (молекулярных) спектров, но никто не знал, как расшифровать эти спектры, какую информацию о строении атомов и молекул они несут.

Где еще ученые встречались с дискретностью? В 1900 г. немецкий ученый Макс Планк вывел формулу, для характеристики излучения абсолютно черного тела (АЧТ — тело, которое поглощает все падающие на него лучи, а все излучение, которое от него исходит, оно генерирует само). Поскольку излучение АЧТ не зависело от материала, из которого оно было сделано, то М.Планк предположил, что генерируют излучение электроны, входящие в состав любых материалов, при этом колеблющиеся с частотой n электроны могут находиться лишь в состояниях, набор которых определяет квантовое число n, принимающее целочисленные значения 1, 2, 3, 4 и т.д.:

,

Поэтому Нильс Бор предположил, что при движении электрона по орбите вокруг ядра его момент количества движения (произведение массы me на скорость v в физике называют импульсом или количеством движения, а при умножении этой величины на радиус окружности r получают момент количества движения) является величиной квантованной:


Решая совместно систему из уравнения всемирного тяготения и последнего уравнения, Н. Бор не только получил «дозволенные» орбиты для электрона в атоме водорода, но и вычислил радиусы этих орбит, орбитальную скорость электрона, потенциальную, кинетическую и полную энергии электрона на этих орбитах. Если электрон перескакивает с одной дозволенной орбиты на другую, то, например, избыток энергии он излучает в виде фотона (электромагнитной волны) с частотой n или длиной волны l=1/n. В результате Н.Бор не только вывел формулу Бальмера, но и получил выражение для константы Ридберга через фундаментальные физические константы.

Конечно, главное противоречие планетарной модели в теории Бора так и не было преодолено, но на ее сторону были привлечены очень точные для того времени спектральные данные для атомарного водорода. Исследуя спектр солнечного света, удалось найти не только линейчатый спектр атомарного водорода, но и обнаружить «смещенные» линии, которые были отнесены к изотопу водорода — дейтерию, масса ядра которого почти в два раза больше, чем у водорода, и к ионизированному гелию He+, масса которого в четыре раза больше, чем у водорода. Когда-то в споре философов о познаваемости окружающего нас мира как пример того, что человек никогда не сможет узнать, приводили качественный и количественный состав Солнца. Сейчас его ученые знают гораздо лучше, чем качественный и количественный состав Земли, особенно ее глубинных слоев — ядра.

Таким образом, переход от модели строения атома, предложенной Дж.Дж.Томсоном, к планетарной модели большой вклад внесли Э.Резерфорд и Н.Бор. Эту модель называют «Моделью Резерфорда-Бора». Попытки Н.Бора расшифровать атомные спектры многоэлектронных атомов не увенчались успехом.

 

другие статьи:

  1. Агрегатные состояние вещества
  2. Строение атома — развитие моделей
  3. Квантовая механика и строение атома водорода
  4. Электронные конфигурации атомов и периодический закон
  5. Ядра атомов. Радиоактивность и изотопы
  6. Строение молекул. Типы химической связи
  7. Квантовая механика молекул и теория химической связи. Метод молекулярных орбиталей. Теория спин-валентности
  8. Окислительно-восстановительные реакции
  9. Химическая термодинамика
  10. Химическая кинетика и катализ
  11. Химическое равновесие. Обратимые и необратимые реакции
  12. Электрохимия. Свойства электролитов. Электролиз

Строение атома, химическая связь, валентность и строение молекул. Строение атомов химических элементов

Документальные учебные фильмы. Серия «Физика».

Атом (от греческого atomos — неделимый) — одноядерная, неделимая химическим путем частица химического элемента, носитель свойства вещества. Вещества состоят из атомов. Сам атом состоит из положительно заряженного ядра и отрицательно заряженного электронного облака. В целом атом электронейтрален. Размер атома полностью определяется размером его электронного облака, поскольку размер ядра ничтожно мал по сравнению с размером электронного облака. Ядро состоит из Z положительно заряженных протонов (заряд протона соответствует +1 в условных единицах) и N нейтронов, которые не несут на себе заряда (протоны и нейтроны называют нуклонами). Таким образом, заряд ядра определятся только количеством протонов и равен порядковому номеру элемента в таблице Менделеева. Положительный заряд ядра компенсируется отрицательно заряженными электронами (заряд электрона -1 в условных единицах), которые формируют электронное облако. Количество электронов равно количеству протонов. Массы протонов и нейтронов равны (соответственно 1 и 1 а.е.м.).

Масса атома определяется массой его ядра, поскольку масса электрона примерно в 1850 раз меньше массы протона и нейтрона и в расчетах редко учитывается. Количество нейтронов можно узнать по разности между массой атома и количеством протонов (N=A-Z). Вид атомов какого-либо химического элемента с ядром, состоящим из строго определённого числа протонов (Z) и нейтронов (N) называется нуклидом.

Перед изучением свойств электрона и правил формирования электронных уровней, необходимо затронуть историю формирования представлений о строении атома. Мы не будем рассматривать полную историю становления атомарного строения, а остановимся лишь на самых актуальных и наиболее «верных» представлениях, способных наиболее наглядно показать как располагаются электроны в атоме. Первыми наличие атомов как элементарных составляющих вещества, предположили еще древнегреческие философы. После чего история строения атома прошла сложный путь и разные представления, такие как неделимость атома, Томсоновская модель атома и другие. Наиболее близкой оказалась модель атома, предложенная Эрнестом Резерфордом в 1911 году. Он сравнил атом с солнечной системой, где в роли солнца выступало ядро атома, а электроны двигались вокруг него подобно планетам. Размещение электронов на стационарных орбитах было очень важным шагом в понимании строения атома. Однако такая планетарная модель строения атома шла в противоречие с классической механикой. Дело в том, что при движении электрона по орбите он должен был терять потенциальную энергию и в конце концов «упасть» на ядро и атом должен был прекратить свое существование. Такой парадокс был устранен введением постулатов Нильсом Бором. Согласно этим постулатам электрон двигался по стационарным орбитам вокруг ядра и при нормальных условиях не поглощал и не испускал энергию. Постулаты показывают, что для описания атома законы классической механики не подходят. Такая модель атома называется моделью Бора-Резерфорда. Продолжением планетарного строения атома является квантово-механическая модель атома, согласно которой мы и будем рассматривать электрон.

Электрон является квазичастицей проявляя корпускулярно-волновой дуализм. Он одновременно является и частицей (корпускула) и волной. К свойствам частицы можно отнести массу электрона и его заряд, а к волновым свойствам — способность к дифракции и интерференции. Связь между волновыми и корпускулярными свойствами электрона отражены в уравнении де Бройля.

(Конспект лекций)

Строение атома. Введение.

Объектом изучения в химии являются химические элементы и их соединения. Химическим элементом называют совокупность атомов с одинаковым положительным зарядом. Атом – это наименьшая частица химического элемента, сохраняющая его химические свойства . Связываясь, друг с другом, атомы одного или разных элементов образуют более сложные частицы – молекулы . Совокупность атомов или молекул образуют химические вещества. Каждое индивидуальное химическое вещество характеризуется набором индивидуальных физических свойств, такими как температуры кипения и плавления, плотностью, электро- и теплопроводностью и т.п.

1. Строение атома и Периодическая система элементов

Д.И. Менделеева .

Знание и понимание закономерностей порядка заполнения Периодической системы элементов Д.И. Менделеева позволяет понять следующее:

1.физическую суть существования в природе определенных элементов,

2. природу химической валентности элемента,

3.способность и «лёгкость» элемента отдавать или принимать электроны при взаимодействии с другим элементом,

4.природу химических связей, которые может образовать данный элемент при взаимодействии с другими элементами, пространственное строение простых и сложных молекул и пр., пр.

Строение атома.

Атом представляет собой сложную микросистему находящихся в движении и взаимодействующих друг с другом элементарных частиц.

В конце 19 и начале 20 веков было установлено, что атомы состоят из более мелких частиц: нейтронов, протонов и электронов, Последние две частицы являются заряженными частицами, протон несет на себе положительный заряд, электрон — отрицательный. Поскольку атомы элемента в основном состоянии электронейтральны, то это означает, что число протонов в атоме любого элемента равно числу электронов. Масса атомов определяется суммой массы протонов и нейтронов, количество которых равна разности массы атомов и его порядкового номера в периодической системе Д. И. Менделеева.

В 1926 г Шрёдингер предложил описывать движение микрочастиц в атоме элемента при помощи выведенного им волнового уравнения. При решении волнового уравнения Шрёдингера для атома водорода появляются три целочисленных квантовых числа: n , ℓ и m , которые характеризуют состояние электрона в трёхмерном пространстве в центральном поле ядра. Квантовые числа n , ℓ и m принимают целочисленные значения. Волновая функция, определяемая тремя квантовыми числами n , ℓ и m и получаемая в результате решения уравнения Шрёдингера, называется орбиталью. Орбиталь — это область пространства, в котором наиболее вероятно нахождение электрона , принадлежащего атому химического элемента. Таким образом, решение уравнения Шредингера для атома водорода приводит к появлению трёх квантовых чисел, физический смысл которых состоит в том, что они характеризуют три разного вида орбиталей, которые может иметь атом. Рассмотрим более подробно каждое квантовое число.

Главное квантовое число n может принимать любые положительные целочисленные значения: n = 1,2,3,4,5,6,7…Оно характеризует энергию электронного уровня и размер электронного ″облака″. Характерно, что номер главного квантового числа совпадает с номером периода, в котором находится данный элемент.

Азимутальное или орбитальное квантовое число ℓ может принимать целочисленные значения от = 0….до n – 1 и определяет момент движения электронов, т.е. форму орбитали. Для различных численных значений ℓ используют следующие обозначения: = 0, 1, 2, 3, и обозначаются символами s , p , d , f , соответственно для = 0, 1, 2 и 3. В периодической системе элементов нет элементов со спиновым числом = 4.

Магнитное квантовое число m характеризует пространственное расположение электронных орбиталей и, следовательно, электромагнитные свойства электрона. Оно может принимать значения от – до + , включая нуль.

Форма или, точнее, свойства симметрии атомных орбиталей зависят от квантовых чисел и m . «Электронное облако», соответствующее s — орбитали имеет, имеет форму шара (при этом = 0).

Рис.1. 1s-орбиталь

Орбитали, определяемые квантовыми числами ℓ = 1 и m ℓ = -1, 0 и +1, называются р-орбиталями. Поскольку m ℓ при этом имеет три разных значений, то атом при этом имеет три энергетически эквивалентные р-орбитали (главное квантовое число для них одно и тоже и может иметь значение n =2,3,4,5,6 или 7). р-Орбитали обладают осевой симметрией и имеют вид объёмных восьмёрок, во внешнем поле ориентированных по осям x, y и z (рис.1.2). Отсюда и происхождение символики p x , p y и p z .

Рис.2. р x , p y и p z -орбитали

Кроме того, имеются d- и f- атомные орбитали, для первых ℓ = 2 и m ℓ = -2, -1, 0, +1 и +2, т.е. пять АО, для вторых ℓ = 3 и m ℓ = -3, -2, -1, 0, +1, +2 и +3, т. е. 7 АО.

Четвёртое квантовое m s называется спиновым квантовым числом, было введено для объяснения некоторых тонких эффектов в спектре атома водорода Гаудсмитом и Уленбеком в 1925г. Спин электрона — это угловой момент заряженной элементарной частицы электрона, ориентация которого квантована, т.е. строго ограничена определёнными углами. Эта ориентация определяется значением спинового магнитного квантового числа (s), которое для электрона равно ½ , поэтому для электрона согласно правилам квантования m s = ± ½. В связи с этим к набору из трёх квантовых чисел следует добавить квантовое числоm s . Подчеркнём еще раз, что четыре квантовых числа определяют порядок построения периодической таблицы элементов Менделеева и объясняют, почему в первом периоде только два элемента, во втором и в третьём – по восемь, — в четвёртом – 18 и т д. Однако, чтобы объяснить строение многоэлектронных атомов, порядок заполнения электронных уровней по мере увеличения положительного заряда атома недостаточно иметь представления о четырёх квантовых числах, «управляющих» поведением электронов при заполнении электронных орбиталей, но необходимо знать ещё некоторые простые правила, а именно, принцип Паули, правило Гунда и правила Клечковского.

Согласно принципа Паули в одном и том же квантовом состоянии, характеризуемом определенными значениями четырёх квантовых чисел, не может находиться более одного электрона. Это означает, что один электрон можно в принципе поместить на любую атомную орбиталь. Два электрона могут находиться на одной атомной орбитали только в том случае, если они отличаются спиновыми квантовыми числами.

При заполнении электронами трёх р-АО, пяти d-AO и семи f-AO следует руководствоваться кроме принципа Паули ещё и правилом Гунда: Заполнение орбиталей одной подоболочки в основном состоянии происходит электронами с одинаковыми спинами.

При заполнении подоболочек (p , d , f )абсолютное значение суммы спинов должно быть максимальной .

Правило Клечковского . Согласно правилу Клечковского при заполнении d и f орбиталией электронами должен соблюдаться принцип минимальной энергии. Согласно этому принципу электроны в основном состоянии заполняют орбитали с минимальными уровнями энергии. Энергию подуровня определяют сумма квантовых чисел n + ℓ = Е .

Первое правило Клечковского : сначала заполняются те подуровни, для которых n + ℓ = Е минимальна.

Второе правило Клечковского : в случае равенства n + ℓ для нескольких подуровней идёт заполнение того подуровня, для которого n минимальна .

В настоящее время известно 109 элементов.

2. Энергия ионизации, сродство к электрону и электроотрицательность .

Важнейшими характеристиками электронной конфигурации атома являются энергия ионизации (ЭИ) или потенциал ионизации (ПИ) и сродство атома к электрону (СЭ). Энергией ионизации называют изменение энергии в процессе отрыва электрона от свободного атома при 0 К: А = + + ē . Зависимость энергии ионизации от порядкового номера Z элемента, размера атомного радиуса имеет ярко выраженный периодический характер.

Сродство к электрону (СЭ), представляет собой изменение энергии, которым сопровождается присоединение электрона к изолированному атому с образованием отрицательного иона при 0 К: А + ē = А (атом и ион находятся в своих основных состояниях). При этом электрон занимает низшую свободную атомную орбиталь (НСАО), если ВЗАО занята двумя электронами. СЭ сильно зависит от их орбитальной электронной конфигурации.

Изменения ЭИ и СЭ коррелируют с изменением многих свойств элементов и их соединений, что используется для предсказания этих свойств по значениям ЭИ и СЭ. Наиболее высоким по абсолютной величине сродством к электрону обладают галогены. В каждой группе периодической таблице элементов потенциал ионизации или ЭИ уменьшается с увеличением номера элемента, что связано с увеличением атомного радиуса и с увеличением количества электронных слоев и что хорошо коррелирует с увеличением восстановительной способности элемента.

В таблице 1 Периодической системы элементов приведены значения ЭИ и СЭ в эВ/на атом. Отметим, что точные значения СЭ известны лишь для немногих атомов, их величины подчёркнуты в таблице 1.

Таблица 1

Первая энергия ионизации (ЭИ), сродство к электрону (СЭ) и электроотрицательность χ) атомов в периодической системе.

χ

0.747

2. 1 0

0, 3 7

1,2 2

χ

0.54

1. 55

-0.3

1. 1 3

0. 2

0. 91

1.2 5

-0. 1

0, 55

1.47

0. 59

3.45

0. 64

1 ,60

χ

0. 7 4

1. 89

-0.3

1 . 3 1

1 . 6 0

0. 6

1.63

0.7

2.07

3.61

χ

2. 3 6

0 .6

1.26(α)

-0.9

1 . 39

0. 18

1.2

0. 6

2.07

3.36

χ

2.4 8

-0.6

1 . 56

0. 2

2.2

χ

2.6 7

2, 2 1

О s

χ – электроотрицательность по Полингу

r — атомный радиус, (из «Лабораторные и семинарские занятия по общей и неорганической химии» , Н. С. Ахметов, М.К. Азизова, Л.И. Бадыгина)

Химическими веществами называют то, из чего состоит окружающий нас мир.

Свойства каждого химического вещества делятся на два типа: это химические, которые характеризуют его способность образовывать другие вещества, и физические, которые объективно наблюдаются и могут быть рассмотрены в отрыве от химических превращений. Так, например, физическими свойствами вещества являются его агрегатное состояние (твердое, жидкое или газообразное), теплопроводность, теплоемкость, растворимость в различных средах (вода, спирт и др.), плотность, цвет, вкус и т.д.

Превращения одних химических веществ в другие вещества называют химическими явлениями или химическими реакциями. Следует отметить, что существуют также и физические явления, которые, очевидно, сопровождаются изменением каких-либо физических свойств вещества без его превращения в другие вещества. К физическим явлениям, например, относятся плавление льда, замерзание или испарение воды и др.

О том, что в ходе какого-либо процесса имеет место химическое явление, можно сделать вывод, наблюдая характерные признаки химических реакций, такие как изменение цвета, образование осадка, выделение газа, выделение теплоты и (или) света.

Так, например, вывод о протекании химических реакций можно сделать, наблюдая:

Образование осадка при кипячении воды, называемого в быту накипью;

Выделение тепла и света при горении костра;

Изменение цвета среза свежего яблока на воздухе;

Образование газовых пузырьков при брожении теста и т.д.

Мельчайшие частицы вещества, которые в процессе химических реакций практически не претерпевают изменений, а лишь по-новому соединяются между собой, называются атомами.

Сама идея о существовании таких единиц материи возникла еще в древней Греции в умах античных философов, что собственно и объясняет происхождение термина «атом», поскольку «атомос» в буквальном переводе с греческого означает «неделимый».

Тем не менее, вопреки идее древнегреческих философов, атомы не являются абсолютным минимумом материи, т.е. сами имеют сложное строение.

Каждый атом состоит из так называемых субатомных частиц – протонов, нейтронов и электронов, обозначаемых соответственно символами p + , n o и e − . Надстрочный индекс в используемых обозначениях указывает на то, что протон имеет единичный положительный заряд, электрон – единичный отрицательный заряд, а нейтрон заряда не имеет.

Что касается качественного устройства атома, то у каждого атома все протоны и нейтроны сосредоточены в так называемом ядре, вокруг которого электроны образуют электронную оболочку.

Протон и нейтрон обладают практически одинаковыми массами, т.е. m p ≈ m n , а масса электрона почти в 2000 раз меньше массы каждого из них, т.е. m p /m e ≈ m n /m e ≈ 2000.

Поскольку фундаментальным свойством атома является его электронейтральность, а заряд одного электрона равен заряду одного протона, из этого можно сделать вывод о том, что количество электронов в любом атоме равно количеству протонов.

Так, например, в таблице ниже представлен возможный состав атомов:

Вид атомов с одинаковым зарядом ядер, т.е. с одинаковым числом протонов в их ядрах, называют химическим элементом. Таким образом, из таблицы выше можно сделать вывод о том, что атом1 и атом2 относятся в одному химическому элементу, а атом3 и атом4 — к другому химическому элементу.

Каждый химический элемент имеет свое название и индивидуальный символ, который читается определенным образом. Так, например, самый простой химический элемент, атомы которого содержат в ядре только один протон, имеет название «водород» и обозначается символом «Н», что читается как «аш», а химический элемент с зарядом ядра +7 (т.е. содержащий 7 протонов) — «азот», имеет символ «N» , который читается как «эн».

Как можно заметить из представленной выше таблицы, атомы одного химического элемента могут отличаться количеством нейтронов в ядрах.

Атомы, относящиеся к одному химическому элементу, но имеющие разное количество нейтронов и, как следствие массу, называют изотопами.

Так, например, химический элемент водород имеет три изотопа – 1 Н, 2 Н и 3 Н. Индексы 1, 2 и 3 сверху от символа Н означают суммарное количество нейтронов и протонов. Т.е. зная, что водород – это химический элемент, который характеризуется тем, что в ядрах его атомов находится по одному протону, можно сделать вывод о том, что в изотопе 1 Н вообще нет нейтронов (1-1=0), в изотопе 2 Н – 1 нейтрон (2-1=1) и в изотопе 3 Н – два нейтрона (3-1=2). Поскольку, как уже было сказано, нейтрон и протон имеют одинаковые массы, а масса электрона по сравнению с ними пренебрежимо мала, это значит, что изотоп 2 Н практически в два раза тяжелее изотопа 1 Н, а изотоп 3 Н — и вовсе в три раза. В связи с таким большим разбросом масс изотопов водорода изотопам 2 Н и 3 Н даже были присвоены отдельные индивидуальные названия и символы, что не характерно больше ни для одного другого химического элемента. Изотопу 2 Н дали название дейтерий и присвоили символ D, а изотопу 3 Н дали название тритий и присвоили символ Т.

Если принять массу протона и нейтрона за единицу, а массой электрона пренебречь, фактически верхний левый индекс помимо суммарного количества протонов и нейтронов в атоме можно считать его массой, в связи с чем этот индекс называют массовым числом и обозначают символом А. Поскольку за заряд ядра любого атома отвечают протоны, а заряд каждого протона условно считается равным +1, количество протонов в ядре называют зарядовым числом (Z). Обозначив количество нейтронов в атоме буквой N, математически взаимосвязь между массовым числом, зарядовым числом и количеством нейтронов можно выразить как:

Согласно современным представлениям, электрон имеет двойственную (корпускулярно-волновую) природу. Он обладает свойствами как частицы, так и волны. Подобно частице, электрон имеет массу и заряд, но в то же время поток электронов, подобно волне, характеризуется способностью к дифракции.

Для описания состояния электрона в атоме используют представления квантовой механики, согласно которым электрон не имеет определенной траектории движения и может находиться в любой точке пространства, но с разной вероятностью.

Область пространства вокруг ядра, где наиболее вероятно нахождение электрона, называется атомной орбиталью.

Атомная орбиталь может обладать различной формой, размером и ориентацией. Также атомную орбиталь называют электронным облаком.

Графически одну атомную орбиталь принято обозначать в виде квадратной ячейки:

Квантовая механика имеет крайне сложный математический аппарат, поэтому в рамках школьного курса химии рассматриваются только лишь следствия квантово-механической теории.

Согласно этим следствиям, любую атомную орбиталь и находящийся на ней электрон полностью характеризуют 4 квантовых числа.

  • Главное квантовое число – n — определяет общую энергию электрона на данной орбитали. Диапазон значений главного квантового числа – все натуральные числа, т.е. n = 1,2,3,4, 5 и т.д.
  • Орбитальное квантовое число — l – характеризует форму атомной орбитали и может принимать любые целочисленные значения от 0 до n-1, где n, напомним, — это главное квантовое число.

Орбитали с l = 0 называют s -орбиталями . s-Орбитали имеют сферическую форму и не обладают направленностью в пространстве:

Орбитали с l = 1 называются p -орбиталями . Данные орбитали обладают формой трехмерной восьмерки, т.е. формой, полученной вращением восьмерки вокруг оси симметрии, и внешне напоминают гантель:

Орбитали с l = 2 называются d -орбиталями , а с l = 3 – f -орбиталями . Их строение намного более сложное.

3) Магнитное квантовое число – m l – определяет пространственную ориентацию конкретной атомной орбитали и выражает проекцию орбитального момента импульса на направление магнитного поля. Магнитное квантовое число m l соответствует ориентации орбитали относительно направления вектора напряженности внешнего магнитного поля и может принимать любые целочисленные значения от –l до +l, включая 0, т.е. общее количество возможных значений равно (2l+1). Так, например, при l = 0 m l = 0 (одно значение), при l = 1 m l = -1, 0, +1 (три значения), при l = 2 m l = -2, -1, 0, +1, +2 (пять значений магнитного квантового числа) и т. д.

Так, например, p-орбитали, т.е. орбитали с орбитальным квантовым числом l = 1, имеющие форму «трехмерной восьмерки», соответствуют трем значениям магнитного квантового числа (-1, 0, +1), что, в свою очередь, соответствует трем перпендикулярным друг другу направлениям в пространстве.

4) Спиновое квантовое число (или просто спин) — m s — условно можно считать отвечающим за направление вращения электрона в атоме, оно может принимать значения. Электроны с разными спинами обозначают вертикальными стрелками, направленными в разные стороны: ↓ и .

Совокупность всех орбиталей в атоме, имеющих одно и то же значение главного квантового числа, называют энергетическим уровнем или электронной оболочкой. Любой произвольный энергетический уровень с некоторым номером n состоит из n 2 орбиталей.

Множество орбиталей с одинаковыми значениями главного квантового числа и орбитального квантового числа представляет собой энергетический подуровень.

Каждый энергетический уровень, которому соответствует главное квантовое число n, содержит n подуровней. В свою очередь, каждый энергетический подуровень с орбитальным квантовым числом l, состоит из (2l+1) орбиталей. Таким образом, s-подуровень состоит из одной s-орбитали, p-подуровень – трех p-орбиталей, d-подуровень – пяти d-орбиталей, а f-подуровень — из семи f-орбиталей. Поскольку, как уже было сказано, одна атомная орбиталь часто обозначается одной квадратной ячейкой, то s-, p-, d- и f-подуровни можно графически изобразить следующим образом:

Каждой орбитали соответствует индивидуальный строго определенный набор трех квантовых чисел n, l и m l .

Распределение электронов по орбиталям называют электронной конфигурацией.

Заполнение атомных орбиталей электронами происходит в соответствии с тремя условиями:

  • Принцип минимума энергии : электроны заполняют орбитали, начиная с подуровня с наименьшей энергией. Последовательность подуровней в порядке увеличения их энергий выглядит следующим образом: 1s

Для того чтобы проще запомнить данную последовательность заполнения электронных подуровней, весьма удобна следующая графическая иллюстрация:

  • Принцип Паули : на каждой орбитали может находиться не более двух электронов.

Если на орбитали находится один электрон, то он называется неспаренным, а если два, то их называют электронной парой.

  • Правило Хунда : наиболее устойчивое состояние атома является такое, при котором в пределах одного подуровня атом обладает максимально возможным числом неспаренных электронов. Такое наиболее устойчивое состояние атома называется основным состоянием.

Фактически вышесказанное означает то, что, например, размещение 1-го, 2-х, 3-х и 4-х электронов на трех орбиталях p-подуровня будет осуществляться следующим образом:

Заполнение атомных орбиталей от водорода, имеющего зарядовое число равное 1, до криптона (Kr) с зарядовым числом 36 будет осуществляться следующим образом:

Подобное изображение порядка заполнения атомных орбиталей называется энергетической диаграммой. Исходя из электронных диаграмм отдельных элементов, можно записать их так называемые электронные формулы (конфигурации). Так, например, элемент с 15ю протонами и, как следствие, 15ю электронами, т. е. фосфор (P), будет иметь следующий вид энергетической диаграммы:

При переводе в электронную формулу атома фосфора примет вид:

15 P = 1s 2 2s 2 2p 6 3s 2 3p 3

Цифрами нормального размера слева от символа подуровня показан номер энергетического уровня, а верхними индексами справа от символа подуровня показано количество электронов на соответствующем подуровне.

Ниже приведены электронные формул первых 36 элементов периодической системы Д.И. Менделеева.
период № элемента символ название электронная формула
I 1 H водород 1s 1
2 He гелий 1s 2
II 3 Li литий 1s 2 2s 1
4 Be бериллий 1s 2 2s 2
5 B бор 1s 2 2s 2 2p 1
6 C углерод 1s 2 2s 2 2p 2
7 N азот 1s 2 2s 2 2p 3
8 O кислород 1s 2 2s 2 2p 4
9 F фтор 1s 2 2s 2 2p 5
10 Ne неон 1s 2 2s 2 2p 6
III 11 Na натрий 1s 2 2s 2 2p 6 3s 1
12 Mg магний 1s 2 2s 2 2p 6 3s 2
13 Al алюминий 1s 2 2s 2 2p 6 3s 2 3p 1
14 Si кремний 1s 2 2s 2 2p 6 3s 2 3p 2
15 P фосфор 1s 2 2s 2 2p 6 3s 2 3p 3
16 S сера 1s 2 2s 2 2p 6 3s 2 3p 4
17 Cl хлор 1s 2 2s 2 2p 6 3s 2 3p 5
18 Ar аргон 1s 2 2s 2 2p 6 3s 2 3p 6
IV 19 K калий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1
20 Ca кальций 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2
21 Sc скандий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1
22 Ti титан 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 2
23 V ванадий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 3
24 Cr хром 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5 здесь наблюдается проскок одного электрона с s на d подуровень
25 Mn марганец 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5
26 Fe железо 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6
27 Co кобальт 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 7
28 Ni никель 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 8
29 Cu медь 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10 здесь наблюдается проскок одного электрона с s на d подуровень
30 Zn цинк 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10
31 Ga галлий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 1
32 Ge германий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 2
33 As мышьяк 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 3
34 Se селен 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 4
35 Br бром 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5
36 Kr криптон 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6

Как уже было сказано, в основном своем состоянии электроны в атомных орбиталях расположены согласно принципу наименьшей энергии. Тем не менее, при наличии пустых p-орбиталей в основном состоянии атома, нередко, при сообщении ему избыточной энергии атом можно перевести в так называемое возбужденное состояние. Так, например, атом бора в основном своем состоянии имеет электронную конфигурацию и энергетическую диаграмму следующего вида:

5 B = 1s 2 2s 2 2p 1

А в возбужденном состояниии (*), т.е. при сообщении некоторой энергии атому бора, его электронная конфигурация и энергетическая диаграмма будут выглядеть так:

5 B* = 1s 2 2s 1 2p 2

В зависимости от того, какой подуровень в атоме заполняется последним, химические элементы делят на s, p, d или f.

Нахождение s, p, d и f-элементов в таблице Д.И. Менделеева:

  • У s-элементов последний заполняемый s-подуровень. К данным элементам относятся элементы главных (слева в ячейке таблицы) подгрупп I и II групп.
  • У p-элементов заполняется p-подуровень. К p-элементам относят последние шесть элементов каждого периода, кроме первого и седьмого, а также элементы главных подгрупп III-VIII групп.
  • d-Элементы расположены между s – и p-элементами в больших периодах.
  • f-Элементы называют лантаноидами и актиноидами. Они вынесены вниз таблицы Д.И. Менделеева.

Урок посвящен формированию представлений о сложном строении атома. Рассматривается состояние электронов в атоме, вводятся понятия «атомная орбиталь и электронное облако», формы орбиталей (s—, p-, d-орбитали). Также рассматриваются такие аспекты, как максимальное число электронов на энергетических уровнях и подуровнях, распределение электронов по энергетическим уровням и подуровням в атомах элементов первых четырех периодов, валентные электроны s-, p- и d-элементов. Приводится графическая схема строения электронных слоев атомов (электронно-графическая формула).

Тема: Строение атома. Периодический закон Д.И. Менделеева

Урок: Строение атома

В переводе с греческого языка, слово «атом» означает «неделимый». Однако, были открыты явления, которые демонстрируют возможность его деления. Это испускание рентгеновских лучей, испускание катодных лучей, явление фотоэффекта, явление радиоактивности. Электроны, протоны и нейтроны — это частицы, из которых состоит атом. Они называются субатомными частицами.

Табл. 1

Кроме протонов, в состав ядра большинства атомов входят нейтроны , не несущие никакого заряда. Как видно из табл. 1, масса нейтрона практически не отличается от массы протона. Протоны и нейтроны составляют ядро атома и называются нуклонами (nucleus — ядро). Их заряды и массы в атомных единицах массы (а.е.м.) показаны в таблице 1. При расчете массы атома массой электрона можно пренебречь.

Масса атома (массовое число) равна сумме масс, составляющих его ядро протонов и нейтронов. Массовое число обозначается буквой А . Из названия этой величины видно, что она тесно связана с округленной до целого числа атомной массой элемента. A = Z + N

Здесь A — массовое число атома (сумма протонов и нейтронов), Z — заряд ядра (число протонов в ядре), N — число нейтронов в ядре. Согласно учению об изотопах, понятию «химический элемент» можно дать такое определение:

Химическим элементом называется совокупность атомов с одинаковым зарядом ядра.

Некоторые элементы существуют в виде нескольких изотопов . «Изотопы» означает «занимающий одно и тоже место». Изотопы имеют одинаковое число протонов, но отличаются массой, т. е. числом нейтронов в ядре (числом N). Поскольку нейтроны практически не влияют на химические свойства элементов, все изотопы одного и того же элемента химически неотличимы.

Изотопами называются разновидности атомов одного и того же химического элемента с одинаковым зарядом ядра (то есть с одинаковым числом протонов), но с разным числом нейтронов в ядре.

Изотопы отличаются друг от друга только массовым числом. Это обозначается либо верхним индексом в правом углу, либо в строчку: 12 С или С-12. Если элемент содержит несколько природных изотопов, то в периодической таблице Д. И. Менделеева указывается, его средняя атомная масса с учетом распространённости. Например, хлор содержит 2 природных изотопа 35 Cl и 37 Cl, содержание которых составляет соответственно 75% и 25%. Таким образом, атомная масса хлора будет равна:

А r (Cl )=0,75 . 35+0,25 . 37=35,5

Для тяжёлых искусственно-синтезированных атомов приводится одно значение атомной массы в квадратных скобках. Это атомная масса наиболее устойчивого изотопа данного элемента.

Основные модели строения атома

Исторически первой в 1897 году была модель атома Томсона.

Рис. 1. Модель строения атома Дж. Томсона

Английский физик Дж. Дж. Томсон предположил, что атомы состоят из положительно заряженной сферы, в которую вкраплены электроны (рис. 1). Эту модель образно называют «сливовый пудинг», булочка с изюмом (где «изюминки» — это электроны), или «арбуз» с «семечками» — электронами. Однако от этой модели отказались, т. к. были получены экспериментальные данные, противоречащие ей.

Рис. 2. Модель строения атома Э. Резерфорда

В 1910 году английский физик Эрнст Резерфорд со своими учениками Гейгером и Марсденом провели эксперимент, который дал поразительные результаты, необъяснимые с точки зрения модели Томсона. Эрнст Резерфорд доказал на опыте, что в центре атома имеется положительно заряженное ядро (рис. 2), вокруг которого, подобно планетам вокруг Солнца, вращаются электроны. Атом в целом электронейтрален, а электроны удерживаются в атоме за счет сил электростатического притяжения (кулоновских сил). Эта модель имела много противоречий и главное, не объясняла, почему электроны не падают на ядро, а также возможность поглощения и излучения им энергии.

Датский физик Н. Бор в 1913 году, взяв за основу модель атома Резерфорда, предложил модель атома, в которой электроны-частицы вращаются вокруг ядра атома примерно так же, как планеты обращаются вокруг Солнца.

Рис. 3. Планетарная модель Н. Бора

Бор предположил, что электроны в атоме могут устойчиво существовать только на орбитах, удаленных от ядра на строго определенные расстояния. Эти орбиты он назвал стационарными. Вне стационарных орбит электрон существовать не может. Почему это так, Бор в то время объяснить не мог. Но он показал, что такая модель (рис. 3) позволяет объяснить многие экспериментальные факты.

В настоящее время для описания строения атома используется квантовая механика. Это наука, главным аспектом в которой является то, что электрон обладает свойствами частицы и волны одновременно, т. е. корпускулярно-волновым дуализмом. Согласно квантовой механике, область пространства, в которой вероятность нахождения электрона наибольшая, называется орбиталью. Чем дальше электрон находится от ядра, тем меньше его энергия взаимодействия с ядром. Электроны с близкими энергиями образуют энергетический уровень. Число энергетических уровней равно номеру периода , в котором находится данный элемент в таблице Д.И. Менделеева. Существуют различные формы атомных орбиталей. (Рис. 4). d-орбиталь и f-орбиталь имеют более сложную форму.

Рис. 4. Формы атомных орбиталей

В электронной оболочке любого атома ровно столько электронов, сколько протонов в его ядре, поэтому атом в целом электронейтрален. Электроны в атоме размещаются так, чтобы их энергия была минимальной. Чем дальше электрон находится от ядра, тем больше орбиталей и тем сложнее они по форме. На каждом уровне и подуровне может помещаться только определенное количество электронов. Подуровни, в свою очередь, состоят из одинаковых по энергии орбиталей .

На первом энергетическом уровне, наиболее близком к ядру, может существовать одна сферическая орбиталь (1 s ). На втором энергетическом уровне — сферическая орбиталь, большая по размеру и три р-орбитали: 2 s 2 ppp . На третьем уровне: 3 s 3 ppp 3 ddddd .

Кроме движения вокруг ядра, электроны обладают еще движением, которое можно представить, как их движение вокруг собственной оси. Это вращение называется спином (в пер. с англ. «веретено»). На одной орбитали могут находиться лишь два электрона, обладающих противоположными (антипараллельными) спинами.

Максимальное число электронов на энергетическом уровне определяется по формуле N =2 n 2.

Где n — главное квантовое число (номер энергетического уровня). См. табл. 2

Табл. 2

В зависимости от того, на какой орбитали находится последний электрон, различают s -, p -, d -элементы. Элементы главных подгрупп относятся к s -, p -элементам. В побочных подгруппах находятся d -элементы

Графическая схема строения электронных слоев атомов (электронно-графическая формула).

Для описания расположения электронов на атомных орбиталях используют электронную конфигурацию. Для её написания в строчку пишутся орбитали в условных обозначениях (s- -, p -, d-, f -орбитали), а перед ними — числа, обозначающие номер энергетического уровня. Чем больше число, тем дальше электрон находится от ядра. В верхнем регистре, над обозначением орбитали, пишется количество электронов, находящихся на данной орбитали (Рис. 5).

Рис. 5

Графически распределение электронов на атомных орбиталях можно представить в виде ячеек. Каждая ячейка соответствует одной орбитали. Для р-орбитали таких ячеек будет три, для d-орбитали — пять, для f-орбитали — семь. В одной ячейке может находиться 1 или 2 электрона. Согласно правилу Гунда , электроны распределяются на одинаковых по энергии орбиталях (например, на трех p-орбиталях) сначала по одному, и лишь когда в каждой такой орбитали уже находится по одному электрону, начинается заполнение этих орбиталей вторыми электронами. Такие электроны называют спаренными. Объясняют это тем, что в соседних ячейках электроны меньше отталкиваются друг от друга, как одноименно заряженные частицы.

См. рис. 6 для атома 7 N.

Рис. 6

Электронная конфигурация атома скандия

21 Sc : 1 s 2 2 s 2 2 p 6 3 s 2 3 p 6 4 s 2 3 d 1

Электроны внешнего энергетического уровня называются валентными. 21 Sc относится к d -элементам.

Подведение итога урока

На уроке было рассмотрено строение атома, состояние электронов в атоме, введено понятие «атомная орбиталь и электронное облако». Учащиеся узнали, что такое форма орбиталей (s -, p -, d -орбитали), каково максимальное число электронов на энергетических уровнях и подуровнях, распределение электронов по энергетическим уровням, что такое s -, p — и d -элементы. Приведена графическая схема строения электронных слоев атомов (электронно-графическая формула).

Список литературы

1. Рудзитис Г.Е. Химия. Основы общей химии. 11 класс: учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. — 14-е изд. — М.: Просвещение, 2012.

2. Попель П.П. Химия: 8 кл.: учебник для общеобразовательных учебных заведений / П.П. Попель, Л.С.Кривля. — К.: ИЦ «Академия», 2008. — 240 с.: ил.

3. А.В. Мануйлов, В. И. Родионов. Основы химии. Интернет-учебник.

Домашнее задание

1. №№5-7 (с. 22) Рудзитис Г.Е. Химия. Основы общей химии. 11 класс: учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. — 14-е изд. — М.: Просвещение, 2012.

2. Напишите электронные формулы для следующих элементов: 6 C, 12 Mg, 16 S, 21 Sc.

3. Элементы имеют следующие электронные формулы: а) 1s 2 2s 2 2p 4 .б) 1s 2 2s 2 2p 6 3s 2 3p 1 . в) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 . Какие это элементы?

Состав атома.

Атом состоит из атомного ядра и электронной оболочки .

Ядро атома состоит из протонов (p + ) и нейтронов (n 0). У большинства атомов водорода ядро состоит из одного протона.

Число протонов N (p + ) равно заряду ядра (Z ) и порядковому номеру элемента в естественном ряду элементов (и в периодической системе элементов).

N (p +) = Z

Сумма числа нейтронов N (n 0), обозначаемого просто буквой N , и числа протонов Z называется массовым числом и обозначается буквой А .

A = Z + N

Электронная оболочка атома состоит из движущихся вокруг ядра электронов (е -).

Число электронов N (e -) в электронной оболочке нейтрального атома равно числу протонов Z в его ядре.

Масса протона примерно равна массе нейтрона и в 1840 раз больше массы электрона, поэтому масса атома практически равна массе ядра.

Форма атома — сферическая. Радиус ядра примерно в 100000 раз меньше радиуса атома.

Химический элемент — вид атомов (совокупность атомов) с одинаковым зарядом ядра (с одинаковым числом протонов в ядре).

Изотоп — совокупность атомов одного элемента с одинаковым числом нейтронов в ядре (или вид атомов с одинаковым числом протонов и одинаковым числом нейтронов в ядре).

Разные изотопы отличаются друг от друга числом нейтронов в ядрах их атомов.

Обозначение отдельного атома или изотопа: (Э — символ элемента), например: .

Строение электронной оболочки атома

Атомная орбиталь — состояние электрона в атоме. Условное обозначение орбитали — . Каждой орбитали соответствует электронное облако.

Орбитали реальных атомов в основном (невозбужденном) состоянии бывают четырех типов: s , p , d и f .

Электронное облако — часть пространства, в которой электрон можно обнаружить с вероятностью 90 (или более) процентов.

Примечание : иногда понятия «атомная орбиталь» и «электронное облако» не различают, называя и то, и другое «атомной орбиталью».

Электронная оболочка атома слоистая. Электронный слой образован электронными облаками одинакового размера. Орбитали одного слоя образуют электронный («энергетический») уровень , их энергии одинаковы у атома водорода, но различаются у других атомов.

Однотипные орбитали одного уровня группируются в электронные (энергетические) подуровни:
s -подуровень (состоит из одной s -орбитали), условное обозначение — .
p -подуровень (состоит из трех p
d -подуровень (состоит из пяти d -орбиталей), условное обозначение — .
f -подуровень (состоит из семи f -орбиталей), условное обозначение — .

Энергии орбиталей одного подуровня одинаковы.

При обозначении подуровней к символу подуровня добавляется номер слоя (электронного уровня), например: 2s , 3p , 5d означает s -подуровень второго уровня, p -подуровень третьего уровня, d -подуровень пятого уровня.

Общее число подуровней на одном уровне равно номеру уровня n . Общее число орбиталей на одном уровне равно n 2 . Соответственно этому, общее число облаков в одном слое равно также n 2 .

Обозначения: — свободная орбиталь (без электронов), — орбиталь с неспаренным электроном, — орбиталь с электронной парой (с двумя электронами).

Порядок заполнения электронами орбиталей атома определяется тремя законами природы (формулировки даны упрощенно):

1. Принцип наименьшей энергии — электроны заполняют орбитали в порядке возрастания энергии орбиталей.

2. Принцип Паули — на одной орбитали не может быть больше двух электронов.

3. Правило Хунда — в пределах подуровня электроны сначала заполняют свободные орбитали (по одному), и лишь после этого образуют электронные пары.

Общее число электронов на электронном уровне (или в электронном слое) равно 2n 2 .

Распределение подуровней по энергиям выражается рядом (в прядке увеличения энергии):

1s , 2s , 2p , 3s , 3p , 4s , 3d , 4p , 5s , 4d , 5p , 6s , 4f , 5d , 6p , 7s , 5f , 6d , 7p

Наглядно эта последовательность выражается энергетической диаграммой:

Распределение электронов атома по уровням, подуровням и орбиталям (электронная конфигурация атома) может быть изображена в виде электронной формулы, энергетической диаграммы или, упрощенно, в виде схемы электронных слоев («электронная схема»).

Примеры электронного строения атомов:

Валентные электроны — электроны атома, которые могут принимать участие в образовании химических связей. У любого атома это все внешние электроны плюс те предвнешние электроны, энергия которых больше, чем у внешних. Например: у атома Ca внешние электроны — 4s 2 , они же и валентные; у атома Fe внешние электроны — 4s 2 , но у него есть 3d 6 , следовательно у атома железа 8 валентных электронов. Валентная электронная формула атома кальция — 4s 2 , а атома железа — 4s 2 3d 6 .

Периодическая система химических элементов Д. И. Менделеева
(естественная система химических элементов)

Периодический закон химических элементов (современная формулировка): свойства химических элементов, а также простых и сложных веществ, ими образуемых, находятся в периодической зависимости от значения заряда из атомных ядер.

Периодическая система — графическое выражение периодического закона.

Естественный ряд химических элементов — ряд химических элементов, выстроенных по возрастанию числа протонов в ядрах их атомов, или, что то же самое, по возрастанию зарядов ядер этих атомов. Порядковый номер элемента в этом ряду равен числу протонов в ядре любого атома этого элемента.

Таблица химических элементов строится путем «разрезания» естественного ряда химических элементов на периоды (горизонтальные строки таблицы) и объединения в группы (вертикальные столбцы таблицы) элементов, со сходным электронным строением атомов.

В зависимости от способа объединения элементов в группы таблица может быть длиннопериодной (в группы собраны элементы с одинаковым числом и типом валентных электронов) и короткопериодной (в группы собраны элементы с одинаковым числом валентных электронов).

Группы короткопериодной таблицы делятся на подгруппы (главные и побочные ), совпадающие с группами длиннопериодной таблицы.

У всех атомов элементов одного периода одинаковое число электронных слоев, равное номеру периода.

Число элементов в периодах: 2, 8, 8, 18, 18, 32, 32. Большинство элементов восьмого периода получены искусственно, последние элементы этого периода еще не синтезированы. Все периоды, кроме первого начинаются с элемента, образующего щелочной металл (Li, Na, K и т. д.), а заканчиваются элементом, образующим благородный газ (He, Ne, Ar, Kr и т. д.).

В короткопериодной таблице — восемь групп, каждая из которых делится на две подгруппы (главную и побочную), в длиннопериодной таблице — шестнадцать групп, которые нумеруются римскими цифрами с буквами А или В, например: IA, IIIB, VIA, VIIB. Группа IA длиннопериодной таблицы соответствует главной подгруппе первой группы короткопериодной таблицы; группа VIIB — побочной подгруппе седьмой группы: остальные — аналогично.

Характеристики химических элементов закономерно изменяются в группах и периодах.

В периодах (с увеличением порядкового номера)

  • увеличивается заряд ядра,
  • увеличивается число внешних электронов,
  • уменьшается радиус атомов,
  • увеличивается прочность связи электронов с ядром (энергия ионизации),
  • увеличивается электроотрицательность,
  • усиливаются окислительные свойства простых веществ («неметалличность»),
  • ослабевают восстановительные свойства простых веществ («металличность»),
  • ослабевает основный характер гидроксидов и соответствующих оксидов,
  • возрастает кислотный характер гидроксидов и соответствующих оксидов.

В группах (с увеличением порядкового номера)

  • увеличивается заряд ядра,
  • увеличивается радиус атомов (только в А-группах),
  • уменьшается прочность связи электронов с ядром (энергия ионизации; только в А-группах),
  • уменьшается электроотрицательность (только в А-группах),
  • ослабевают окислительные свойства простых веществ («неметалличность»; только в А-группах),
  • усиливаются восстановительные свойства простых веществ («металличность»; только в А-группах),
  • возрастает основный характер гидроксидов и соответствующих оксидов (только в А-группах),
  • ослабевает кислотный характер гидроксидов и соответствующих оксидов (только в А-группах),
  • снижается устойчивость водородных соединений (повышается их восстановительная активность; только в А-группах).
Задачи и тесты по теме «Тема 9. «Строение атома. Периодический закон и периодическая система химических элементов Д. И. Менделеева (ПСХЭ)».»
  • Периодический закон — Периодический закон и строение атомов 8–9 класс
    Вы должны знать: законы заполнения орбиталей электронами (принцип наименьшей энергии, принцип Паули, правило Хунда), структуру периодической системы элементов.

    Вы должны уметь: определять состав атома по положению элемента в периодической системе, и, наоборот, находить элемент в периодической системе, зная его состав; изображать схему строения, электронную конфигурацию атома, иона, и, наоборот, определять по схеме и электронной конфигурации положение химического элемента в ПСХЭ; давать характеристику элемента и образуемых им веществ по его положению в ПСХЭ; определять изменения радиуса атомов, свойств химических элементов и образуемых ими веществ в пределах одного периода и одной главной подгруппы периодической системы.

    Пример 1. Определите количество орбиталей на третьем электронном уровне. Какие это орбитали?
    Для определения количества орбиталей воспользуемся формулой N орбиталей = n 2 , где n — номер уровня. N орбиталей = 3 2 = 9. Одна 3s -, три 3p — и пять 3d -орбиталей.

    Пример 2. Определите, у атома какого элемента электронная формула 1s 2 2s 2 2p 6 3s 2 3p 1 .
    Для того, чтобы определить, кокой это элемент, надо выяснить его порядковый номер, который равен суммарному числу электронов атома. В данном случае: 2 + 2 + 6 + 2 + 1 = 13. Это алюминий.

    Убедившись, что все необходимое усвоено, переходите к выполнению заданий. Желаем успехов.


    Рекомендованная литература:
    • О. С. Габриелян и др. Химия 11 кл. М., Дрофа, 2002;
    • Г. Е. Рудзитис, Ф. Г. Фельдман. Химия 11 кл. М., Просвещение, 2001.

Рекомендуем также

Строение атома водорода (H), схема и примеры

Общие сведения о строении атома водорода

Относится к неметаллам. Заряд ядра равен 1. Атомный вес может варьироваться: 1, 2, 3, что связано с наличием изотопов дейтерия и трития.

Электронное строение атома водорода

В атоме водорода имеется положительно заряженное ядро (+1), 1 протон и один электрон. Поскольку водород имеет самое простейшее строение атома из всех элементов Периодической системы, он хорошо изучен. В 1913 году Нильс Бор предложил схему строения атома водорода, согласно которой положительно заряженное ядро находится в центре, а вокруг него по единственной орбитали движется электрон (рис. 1). В соответствии с этой схемой он вывел спектр излучения этого химического элемента. Который был позже доказан с помощью квантово-механических расчетов уравнения Шредингера (1925-1930 годы).

Рис. 1. Схема строения атома водорода.

Электронная конфигурация атома водорода будет выглядеть следующим образом:

1s1.

Водород относится к семейству s-элементов. Энергетическая диаграмма атома водорода имеет вид:

Единственный электрон, который имеется у водорода является валентным, т.к. участвует в образовании химических связей. В результате взаимодействия водород может как терять электрон, т.е. являться его донором, так и принимать, т.е. быть акцептором. В этих случаях атом превращается либо в положительно, либо отрицательно заряженный ион (H+):

H0 –e →H+;

H0 +e →H.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Современные представления о строении атома — «Химическая продукция»

Что такое строение атома, современные представления об атоме

Что такое современные представления о строении атома.

  • Химия — наука о веществах, их свойствах и превращениях.
  • Химическими веществами называют то, из чего состоит окружающий нас мир.

Свойства каждого химического вещества делятся на два типа: это химические, которые характеризуют его способность образовывать другие вещества, и физические, которые объективно наблюдаются и могут быть рассмотрены в отрыве от химических превращений.

Физическими свойствами вещества являются его агрегатное состояние (твердое, жидкое или газообразное), теплопроводность, теплоемкость, растворимость в различных средах (вода, спирт и др.), плотность, цвет, вкус и т.д.

Превращения одних химических веществ в другие вещества называют химическими явлениями или химическими реакциями. Следует отметить, что существуют также и физические явления, которые, очевидно, сопровождаются изменением каких-либо физических свойств вещества без его превращения в другие вещества. ъ

К физическим явлениям относятся

  • плавление льда
  • замерзание
  • испарение воды и др.

О том, что в ходе какого-либо процесса имеет место химическое явление, можно сделать вывод, наблюдая характерные признаки химических реакций, такие как изменение цвета, образование осадка, выделение газа, выделение теплоты и (или) света.

Вывод о протекании химических реакций можно сделать, наблюдая:

  • образование осадка при кипячении воды, называемого в быту накипью;
  • выделение тепла и света при горении костра;
  • изменение цвета среза свежего яблока на воздухе;
  • образование газовых пузырьков при брожении теста и т. д.

Мельчайшие частицы вещества, которые в процессе химических реакций практически не претерпевают изменений, а лишь по-новому соединяются между собой, называются атомами.

Сама идея о существовании таких единиц материи возникла еще в древней Греции в умах античных философов, что собственно и объясняет происхождение термина «атом», поскольку «атомос» в буквальном переводе с греческого означает «неделимый».

Тем не менее, вопреки идее древнегреческих философов, атомы не являются абсолютным минимумом материи, т.е. сами имеют сложное строение.

Каждый атом состоит из так называемых субатомных частиц – протонов, нейтронов и электронов, обозначаемых соответственно символами p+, no и e−. Надстрочный индекс в используемых обозначениях указывает на то, что протон имеет единичный положительный заряд, электрон – единичный отрицательный заряд, а нейтрон заряда не имеет.

Что касается качественного устройства атома, то у каждого атома все протоны и нейтроны сосредоточены в так называемом ядре, вокруг которого электроны образуют электронную оболочку.

Протон и нейтрон обладают практически одинаковыми массами, т.е. mp ≈ mn , а масса электрона почти в 2000 раз меньше массы каждого из них, т.е. mp/me ≈ mn/me ≈ 2000.

Поскольку фундаментальным свойством атома является его электронейтральность, а заряд одного электрона равен заряду одного протона, из этого можно сделать вывод о том, что количество электронов в любом атоме равно количеству протонов.

Возможный состав атомов:

атом1 атом2 атом3 атом4
ядро 1p+ 1p+, 1n0 4p+, 3n0 4p+, 4n0
оболочка 1e 1e 4e 4e

Вид атомов с одинаковым зарядом ядер, т.е. с одинаковым числом протонов в их ядрах, называют химическим элементом. Таким образом, из таблицы выше можно сделать вывод о том, что атом1 и атом2 относятся в одному химическому элементу, а атом3 и атом4 — к другому химическому элементу.

Каждый химический элемент имеет свое название и индивидуальный символ, который читается определенным образом. Так, например, самый простой химический элемент, атомы которого содержат в ядре только один протон, имеет название «водород» и обозначается символом «Н», что читается как «аш», а химический элемент с зарядом ядра +7 (т.е. содержащий 7 протонов) — «азот», имеет символ «N» , который читается как «эн».

Как можно заметить из представленной выше таблицы, атомы одного химического элемента могут отличаться количеством нейтронов в ядрах.

Атомы, относящиеся к одному химическому элементу, но имеющие разное количество нейтронов и, как следствие массу, называют изотопами.

Так, например, химический элемент водород имеет три изотопа – 1Н, 2Н и 3Н. Индексы 1, 2 и 3 сверху от символа Н означают суммарное количество нейтронов и протонов. Т.е. зная, что водород – это химический элемент, который характеризуется тем, что в ядрах его атомов находится по одному протону, можно сделать вывод о том, что в изотопе 1Н вообще нет нейтронов (1-1=0), в изотопе 2Н – 1 нейтрон (2-1=1) и в изотопе 3Н – два нейтрона (3-1=2). Поскольку, как уже было сказано, нейтрон и протон имеют одинаковые массы, а масса электрона по сравнению с ними пренебрежимо мала, это значит, что изотоп 2Н практически в два раза тяжелее изотопа 1Н, а изотоп 3Н — и вовсе в три раза. В связи с таким большим разбросом масс изотопов водорода изотопам 2Н и 3Н даже были присвоены отдельные индивидуальные названия и символы, что не характерно больше ни для одного другого химического элемента. Изотопу 2Н дали название дейтерий и присвоили символ D, а изотопу 3Н дали название тритий и присвоили символ Т.

Если принять массу протона и нейтрона за единицу, а массой электрона пренебречь, фактически верхний левый индекс помимо суммарного количества протонов и нейтронов в атоме можно считать его массой, в связи с чем этот индекс называют массовым числом и обозначают символом А. Поскольку за заряд ядра любого атома отвечают протоны, а заряд каждого протона условно считается равным +1, количество протонов в ядре называют зарядовым числом (Z). Обозначив количество нейтронов в атоме буквой N, математически взаимосвязь между массовым числом, зарядовым числом и количеством нейтронов можно выразить как:

A ravno Z plus N

Согласно современным представлениям, электрон имеет двойственную (корпускулярно-волновую) природу. Он обладает свойствами как частицы, так и волны. Подобно частице, электрон имеет массу и заряд, но в то же время поток электронов, подобно волне, характеризуется способностью к дифракции.

Для описания состояния электрона в атоме используют представления квантовой механики, согласно которым электрон не имеет определенной траектории движения и может находиться в любой точке пространства, но с разной вероятностью.

Область пространства вокруг ядра, где наиболее вероятно нахождение электрона, называется атомной орбиталью.

Атомная орбиталь может обладать различной формой, размером и ориентацией. Также атомную орбиталь называют электронным облаком.

Графически одну атомную орбиталь принято обозначать в виде квадратной ячейки:
jachejka 1

Квантовая механика имеет крайне сложный математический аппарат, поэтому в рамках школьного курса химии рассматриваются только лишь следствия квантово-механической теории.

Согласно этим следствиям, любую атомную орбиталь и находящийся на ней электрон полностью характеризуют 4 квантовых числа.

Главное квантовое число – n — определяет общую энергию электрона на данной орбитали. Диапазон значений главного квантового числа – все натуральные числа, т.е. n = 1,2,3,4, 5 и т.д.
Орбитальное квантовое число — l – характеризует форму атомной орбитали и может принимать любые целочисленные значения от 0 до n-1, где n, напомним, — это главное квантовое число.
Орбитали с l = 0 называют s-орбиталями. s-Орбитали имеют сферическую форму и не обладают направленностью в пространстве:

s-orbital
Орбитали с l = 1 называются p-орбиталями. Данные орбитали обладают формой трехмерной восьмерки, т.е. формой, полученной вращением восьмерки вокруг оси симметрии, и внешне напоминают гантель:

p -orbitals 3d 2
Орбитали с l = 2 называются d-орбиталями, а с l = 3 – f-орбиталями. Их строение намного более сложное.

3) Магнитное квантовое число – ml – определяет пространственную ориентацию конкретной атомной орбитали и выражает проекцию орбитального момента импульса на направление магнитного поля. Магнитное квантовое число ml соответствует ориентации орбитали относительно направления вектора напряженности внешнего магнитного поля и может принимать любые целочисленные значения от –l до +l, включая 0, т.е. общее количество возможных значений равно (2l+1). Так, например, при l = 0 ml = 0 (одно значение), при l = 1 ml = -1, 0, +1 (три значения), при l = 2 ml = -2, -1, 0, +1, +2 (пять значений магнитного квантового числа) и т.д.

Так, например, p-орбитали, т.е. орбитали с орбитальным квантовым числом l = 1, имеющие форму «трехмерной восьмерки», соответствуют трем значениям магнитного квантового числа (-1, 0, +1), что, в свою очередь, соответствует трем перпендикулярным друг другу направлениям в пространстве.

4) Спиновое квантовое число (или просто спин) — ms — условно можно считать отвечающим за направление вращения электрона в атоме, оно может принимать значения . Электроны с разными спинами обозначают вертикальными стрелками, направленными в разные стороны: ↓ и ↑.

Совокупность всех орбиталей в атоме, имеющих одно и то же значение главного квантового числа, называют энергетическим уровнем или электронной оболочкой. Любой произвольный энергетический уровень с некоторым номером n состоит из n2 орбиталей.

Множество орбиталей с одинаковыми значениями главного квантового числа и орбитального квантового числа представляет собой энергетический подуровень.

Каждый энергетический уровень, которому соответствует главное квантовое число n, содержит n подуровней. В свою очередь, каждый энергетический подуровень с орбитальным квантовым числом l, состоит из (2l+1) орбиталей. Таким образом, s-подуровень состоит из одной s-орбитали, p-подуровень – трех p-орбиталей, d-подуровень – пяти d-орбиталей, а f-подуровень — из семи f-орбиталей. Поскольку, как уже было сказано, одна атомная орбиталь часто обозначается одной квадратной ячейкой, то s-, p-, d- и f-подуровни можно графически изобразить следующим образом:

Каждой орбитали соответствует индивидуальный строго определенный набор трех квантовых чисел n, l и ml.

Распределение электронов по орбиталям называют электронной конфигурацией.

Заполнение атомных орбиталей электронами происходит в соответствии с тремя условиями:

Принцип минимума энергии: электроны заполняют орбитали, начиная с подуровня с наименьшей энергией. Последовательность подуровней в порядке увеличения их энергий выглядит следующим образом: 1s<2s<2p<3s<3p<4s≤3d<4p<5s≤4d<5p<6s…;
Для того чтобы проще запомнить данную последовательность заполнения электронных подуровней, весьма удобна следующая графическая иллюстрация:

grficheski pravilo Klechkovskogo
Принцип Паули: на каждой орбитали может находиться не более двух электронов.
Если на орбитали находится один электрон, то он называется неспаренным, а если два, то их называют электронной парой.

Правило Хунда: наиболее устойчивое состояние атома является такое, при котором в пределах одного подуровня атом обладает максимально возможным числом неспаренных электронов. Такое наиболее устойчивое состояние атома называется основным состоянием.
Фактически вышесказанное означает то, что, например, размещение 1-го, 2-х, 3-х и 4-х электронов на трех орбиталях p-подуровня будет осуществляться следующим образом:

chislo electronov poradok zapolnenija
Заполнение атомных орбиталей от водорода, имеющего зарядовое число равное 1, до криптона (Kr) с зарядовым числом 36 будет осуществляться следующим образом:

Jenergeticheskaja diagramma
Подобное изображение порядка заполнения атомных орбиталей называется энергетической диаграммой. Исходя из электронных диаграмм отдельных элементов, можно записать их так называемые электронные формулы (конфигурации). Так, например, элемент с 15ю протонами и, как следствие, 15ю электронами, т.е. фосфор (P), будет иметь следующий вид энергетической диаграммы:

jenergeticheskaja diagramma atoma fosfora
При переводе в электронную формулу атома фосфора примет вид:

15P = 1s22s22p63s23p3

Цифрами нормального размера слева от символа подуровня показан номер энергетического уровня, а верхними индексами справа от символа подуровня показано количество электронов на соответствующем подуровне.

Электронные формул первых 36 элементов периодической системы Д.И. Менделеева.

период № элемента символ название электронная формула
I 1 H водород 1s 1
2 He гелий 1s 2
II 3 Li литий 1s 2 2s 1
4 Be бериллий 1s 2 2s 2
5 B бор 1s 2 2s 2 2p 1
6 C углерод 1s 2 2s 2 2p 2
7 N азот 1s 2 2s 2 2p 3
8 O кислород 1s 2 2s 2 2p 4
9 F фтор 1s 2 2s 2 2p 5
10 Ne неон 1s 2 2s 2 2p 6
III 11 Na натрий 1s 2 2s 2 2p 6 3s 1
12 Mg магний 1s 2 2s 2 2p 6 3s 2
13 Al алюминий 1s 2 2s 2 2p 6 3s 2 3p 1
14 Si кремний 1s 2 2s 2 2p 6 3s 2 3p 2
15 P фосфор 1s 2 2s 2 2p 6 3s 2 3p 3
16 S сера 1s 2 2s 2 2p 6 3s 2 3p 4
17 Cl хлор 1s 2 2s 2 2p 6 3s 2 3p 5
18 Ar аргон 1s 2 2s 2 2p 6 3s 2 3p 6
IV 19 K калий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1
20 Ca кальций 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2
21 Sc скандий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1
22 Ti титан 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 2
23 V ванадий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 3
24 Cr хром 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5 здесь наблюдается проскок одного электрона с s на d подуровень
25 Mn марганец 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5
26 Fe железо 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6
27 Co кобальт 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 7
28 Ni никель 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 8
29 Cu медь 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10 здесь наблюдается проскок одного электрона с s на d подуровень
30 Zn цинк 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10
31 Ga галлий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 1
32 Ge германий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 2
33 As мышьяк 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 3
34 Se селен 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 4
35 Br бром 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5
36 Kr криптон 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6

В основном своем состоянии электроны в атомных орбиталях расположены согласно принципу наименьшей энергии. Тем не менее, при наличии пустых p-орбиталей в основном состоянии атома, нередко, при сообщении ему избыточной энергии атом можно перевести в так называемое возбужденное состояние.

Атом бора в основном своем состоянии имеет электронную конфигурацию и энергетическую диаграмму следующего вида:

5B = 1s22s22p1

электронная формула атома бора
А в возбужденном состоянии (*), т.е. при сообщении некоторой энергии атому бора, его электронная конфигурация и энергетическая диаграмма будут выглядеть так:

5B* = 1s22s12p2

электронная формула атома бора в возбужденном состоянии

В зависимости от того, какой подуровень в атоме заполняется последним, химические элементы делят на s, p, d или f.

Нахождение s, p, d и f-элементов в таблице Д.И. Менделеева:

  • У s-элементов последний заполняемый s-подуровень. К данным элементам относятся элементы главных (слева в ячейке таблицы) подгрупп I и II групп.
  • У p-элементов заполняется p-подуровень. К p-элементам относят последние шесть элементов каждого периода, кроме первого и седьмого, а также элементы главных подгрупп III-VIII групп.
  • d-Элементы расположены между s – и p-элементами в больших периодах.
  • f-Элементы называют лантаноидами и актиноидами. Они вынесены вниз таблицы Д.И. Менделеева.

основные сведения, из каких частиц состоит, описание структуры

Сегодня даже дети дошкольного возраста знают, что все вокруг состоит из молекул и атомов. А вот что это такое и из чего они, в свою очередь, состоят — знает далеко не каждый взрослый. В этой статье просто и доступно, поделимся современными знаниями о мельчайших частицах.

Что такое атом — история открытия

Итак, все окружающие нас объекты и мы сами состоим из крошечных частиц, которые называются атомами. В их состав входят еще меньшие частицы: протоны, нейтроны и электроны. Современное строение атома наука открыла сравнительно недавно, до этого его долго считали неделимой частицей.

Мысль о том, что все вокруг состоит из мельчайших, невидимых глазу частиц возникла в Древней Греции и Древней Индии еще до нашей эры. Древнегреческий философ Демокрит был материалистом. Именно он первым ввел в обиход понятие атома (с греческого — atomos — неделимый). Демокрит считал, что невидимые частицы вечны, их бесчисленное множество, они постоянно двигаются, обладают весом, размером и формой.

Последующее развитие теория атомизма получила в Средние века и Новое время в работах французского физика Пьера Гассенди (1592—1655 гг.) и английского ученого Роберта Бойля (1627-1691 гг.).

Развитием атомистической теории и превращением ее в атомно-молекулярное учение занимались также Ломоносов, Лавуазье, Дальтон.

Долгое время атом считали элементарной, т.е. неделимой частицей. Но в 1897 году Джозеф Дж. Томсон открыл первую субатомную частицу — электрон. Это открытие имело огромное значение. Ученый впервые предложил определенную структуру строения, считавшейся ранее неделимой частицы, которая получила название «пудинг с изюмом». Согласно этой модели атом — это положительно заряженная сфера, внутри которой находятся отрицательно заряженные электроны. 

Но теорию Томсона опроверг Эрнест Резерфорд. В 1917 году британским физиком было совершено открытие протона — положительно заряженной элементарной частицы. Открыв протон, Резерфорд предположил и наличие нейтронов — нейтрально заряженных частиц в атоме. Позже их существование экспериментально подтвердил Джеймс Чэдвик. Основываясь на своем открытии, Резерфорд предложил свое описание атомной модели: положительно заряженное ядро и окружающие его электроны.

В 1913 году датчанин Нильс Бор предложил свой вариант строения атома, получивший название «планетарной модели». Согласно теории Бора, электроны находятся на определенном расстоянии от атомного ядра и вращаются по специальным орбитам (по аналогии с планетами, вращающимися вокруг Солнца). 

В начале XX века планетарную модель заменила волновая модель, принятая научным сообществом во всем мире.

Современные представления о строении атома были бы невозможны без открытия элементарных частиц и явления радиоактивности. Огромный вклад в науку, помимо вышеназванных ученых, внесли Эрвин Шредингер, Макс Планк, Вольфганг Паули.

Атомная структура — современные знания

Источник: infourok.ru

На чем базируется, из скольки главных частиц состоит

Основу современных представлений теории атомизма составляют следующие положения:

  1. Атом состоит из ядра и окружающей его электронной оболочки.
  2. Электронная оболочка представляет собой движущиеся вокруг ядра электроны.
  3. Ядро всегда положительно заряжено — оно состоит из протонов, обозначающихся символом — p и нейтронов — n. Заряд ядра всегда равен сумме протонов в нем.
  4. Атом электронейтрален, так как число отрицательных частиц — электронов (е–) равняется числу положительных частиц — протонов (p+).
  5. Его электронейтральность может нарушаться, при условии, что он отдает или присоединяет электроны, при этом он становится положительно или отрицательно заряженным ионом соответственно.
  6. Электроны располагаются вокруг ядра в трехмерном пространстве. Они находятся в специальных областях, которые называют орбиталями. Каждая из этих областей характеризуется формой, размером и ориентацией внутри атома, каждой из орбиталей присваивается буквенно-цифровое обозначение.

Свойства, масса и размер

Большую часть атома составляет полупустое пространство, заполненное электронами. Ядро — это самая тяжелая (99,97% от массы атома) и одновременно самая маленькая его часть. В ядре как раз и сосредоточена практически вся масса атома. Ее измеряют в а.е.м. — атомных единицах массы. Атомная единица массы равна массе 1/12 части атома углерода, свободно покоящегося и находящегося в основном состоянии. В химии используют «моль» для измерения атомной массы. {-12}\). А радиус ядра в 10 000 раз меньше радиуса атома.

Электронно-графическая формула

Источник: en.ppt-online.org

Периодическая система и строение атома, какая взаимосвязь

В таблице Менделеева указывается относительная атомная масса химических элементов.

Количество протонов в ядре соответствует порядковому номеру химического элемента в известной таблице Менделеева. Заряд ядра — это главная характеристика атома, которая влияет на распределение вещества в таблице Менделеева. 

Количество нейтронов  в таблице не указывается, их можно рассчитать, вычтя из массы атома порядковый номер химического вещества (число его протонов).

Почему ядро не распадается

Науке известно 4 основных вида взаимодействия между телами и частицами:

  • слабое;
  • сильное;
  • электромагнитное;
  • гравитационное.

Внутри атома, в его ядре, между протонами и нейтронами существует сильное взаимодействие, которое не позволяет ядру с легкостью распадаться. В середине XX века человечество обнаружило, что при расщеплении ядер происходит высвобождение огромной энергии, что послужило толчком для развития атомной промышленности и ядерного оружия.

Атомистическая теория — не самая сложная тема, которая есть в физике и химии. Если столкнулись с заданиями посложнее и не понимаете, с чего начать, ищите помощи у специалистов Феникс.Хелп!

3.2 Структура Атома

Развитие современной атомной теории многое открыло о внутренней структуре атомов. Стало известно, что атом содержит очень маленькое ядро, состоящее из положительно заряженных протонов и незаряженных нейтронов, окруженное гораздо большим объемом пространства, содержащим отрицательно заряженные электроны. Ядро содержит большую часть массы атома, потому что протоны и нейтроны намного тяжелее электронов, тогда как электроны занимают почти весь объем атома.Диаметр атома составляет порядка 10 -10 м, тогда как диаметр ядра примерно 10 -15 м, то есть примерно в 100 000 раз меньше. Чтобы получить представление об их относительных размерах, рассмотрим следующее: если бы ядро ​​было размером с чернику, атом был бы размером с футбольный стадион (рис. \(\PageIndex{1}\)).

Рисунок \(\PageIndex{1}\): Если бы атом можно было увеличить до размеров футбольного стадиона, ядро ​​было бы размером с ягоду черники.(в центре кредита: модификация работы «babyknight» / Wikimedia Commons; право на авторство: модификация работы Паксона Вулбера).

Атомы и составляющие их протоны, нейтроны и электроны чрезвычайно малы. Например, атом углерода весит менее 2 \(\times\) 10 −23 г, а электрон имеет заряд менее 2 \(\times\) 10 −19 Кл (кулон). При описании свойств крошечных объектов, таких как атомы, мы используем соответственно малые единицы измерения, такие как атомная единица массы (а.е.м.) и фундаментальная единица заряда (е).Изначально аму определяли по водороду, самому легкому элементу, а затем по кислороду. С 1961 года он определяется в отношении наиболее распространенного изотопа углерода, атомам которого приписывается масса ровно 12 а.е.м. (Этот изотоп известен как «углерод-12», что будет обсуждаться далее в этой главе.) Таким образом, одна а.е.м. точно равна \(1/12\) массы одного атома углерода-12: 1 а.е.м. = 1,6605 \( \раз\) 10 −24 г. (Дальтон (Да) и единая атомная единица массы (u) являются альтернативными единицами, эквивалентными а.е.м..) Фундаментальная единица заряда (также называемая элементарным зарядом) равна величине заряда электрона (e) при e = -1,602 \(\times\) 10 −19 C,

Протон имеет массу 1,0073 а.е.м. и заряд +1,602 \(\times\) 10 −19 Кл. Нейтрон немного тяжелее протона, с массой 1,0087 а.е.м. и нулевым зарядом; как следует из названия, он нейтрален. Электрон имеет заряд -1,602 \(\times\) 10 −19 Кл и является гораздо более легкой частицей с массой около 0.00055 а.е.м. (Чтобы получить массу одного протона, потребуется около 1800 электронов. ) Свойства этих фундаментальных частиц приведены в таблице \(\PageIndex{1}\). (Внимательный студент мог бы заметить, что сумма субатомных частиц атома не равна фактической массе атома: общая масса шести протонов, шести нейтронов и шести электронов составляет 12,0993 а.е.м., что немного больше, чем 12,00 а.е.м. реального углерода. 12. Эта «недостающая» масса известна как дефект массы, и вы узнаете об этом в главе о ядерной химии.)

Имя Местоположение Заряд (С) Относительный заряд Масса (а.е.м.) Масса (г)
электрон вне ядра \(−1.{−24}\)

Число протонов в ядре атома составляет его атомный номер (Z). Это определяющая черта элемента: количество протонов определяет идентичность атома . Например, любой атом, содержащий шесть протонов, является атомом углерода и имеет атомный номер 6, независимо от того, сколько в нем нейтронов или электронов.

Нейтральный атом должен содержать одинаковое количество положительных и отрицательных зарядов, поэтому количество протонов равно количеству электронов.Следовательно, атомный номер также указывает на количество электронов в атоме. Общее количество протонов и нейтронов в атоме называется его массовым числом (А). Таким образом, количество нейтронов представляет собой разницу между массовым числом и атомным номером: A – Z = количество нейтронов.

\[\begin{align*}
\ce{атомный\: число\:(Z)\: &= \:число\: из\: протонов\\
масса\: число\:(A)\: & = \:число\: число\: протонов + число\: число\: нейтронов\\
AZ\: &= \:число\: число\: нейтронов}
\end{align*}\]

Атомы электрически нейтральны, если они содержат одинаковое количество положительно заряженных протонов и отрицательно заряженных электронов. Когда количество этих субатомных частиц равно , а не , атом электрически заряжен и называется ионом . Заряд атома определяется следующим образом:

заряд атома = количество протонов − количество электронов

Верно и то, что:

количество электронов = количество протонов — заряд атома

Как будет более подробно рассмотрено далее в этой главе, атомы (и молекулы) приобретают заряд, приобретая или теряя электроны.Атом, который получает один или несколько электронов, будет иметь отрицательный заряд и называется анионом . Положительно заряженный атом называется катионом . Катион образуется, когда атом теряет один или несколько электронов. Например, нейтральный атом натрия (Z = 11) имеет 11 электронов. Если этот атом потеряет один электрон, он станет катионом с зарядом +1 (11 — 10 = +1). Нейтральный атом кислорода (Z = 8) имеет восемь электронов, и если он получит два электрона, он станет анионом с зарядом -2 (8 — 10 = -2). {2-}\).

Пример \(\PageIndex{1}\): Состав атома

Йод является важным микроэлементом в нашем рационе; он необходим для выработки гормона щитовидной железы. Недостаток йода в рационе может привести к развитию зоба, увеличению щитовидной железы (Рисунок \(\PageIndex{2}\)).

Рисунок \(\PageIndex{2}\): (a) Недостаток йода в рационе может вызвать увеличение щитовидной железы, называемое зобом. (b) Добавление небольшого количества йода в соль, предотвращающее образование зоба, помогло устранить эту проблему в США, где потребление соли велико.(кредит а: модификация работы «Алмази»/Wikimedia Commons; кредит б: модификация работы Майка Моцарта)

Добавление небольшого количества йода в поваренную соль (йодированную соль) практически устранило эту проблему для здоровья в Соединенных Штатах, но до 40% населения мира по-прежнему подвержены риску дефицита йода. Атомы йода добавляются в виде анионов, каждый из которых имеет заряд -1 и массовое число 127. Определите количество протонов, нейтронов и электронов в анионе йода.

Раствор

Атомный номер йода (53) говорит нам о том, что нейтральный атом йода содержит 53 протона в ядре и 53 электрона вне ядра. Поскольку сумма количества протонов и нейтронов равна массовому числу 127, количество нейтронов равно 74 (127 — 53 = 74). Поскольку йод добавляется в виде аниона -1, число электронов равно 54 [53 — (-1) = 54].

Упражнение \(\PageIndex{1}\)

Ион платины имеет массовое число 195 и содержит 74 электрона.Сколько протонов и нейтронов он содержит и каков его заряд?

Ответить

78 протонов; 117 нейтронов; плата +4

Химические символы

Химический символ — это аббревиатура, которую мы используем для обозначения элемента или атома элемента. Например, ртуть обозначается как Hg (рис. \(\PageIndex{3}\)). Мы используем один и тот же символ для обозначения одного атома ртути (микроскопический домен) или для обозначения контейнера из многих атомов элемента ртути (макроскопический домен).

Рисунок \(\PageIndex{3}\) : Символ Hg представляет элемент ртуть независимо от количества; он может представлять собой один атом ртути или большое количество ртути. Изображение использовано с разрешения Википедии (пользователь: Materialscientist).

Символы для нескольких распространенных элементов и их атомов перечислены в таблице \(\PageIndex{2}\). Некоторые символы происходят от общего названия элемента; другие являются сокращениями имени на другом языке.Символы состоят из одной или двух букв, например, H для водорода и Cl для хлора. Чтобы избежать путаницы с другими обозначениями, только первая буква символа пишется заглавной. Например, Co — это символ кобальта, а CO — это соединение монооксида углерода, которое содержит атомы углерода (C) и кислорода (O). Все известные элементы и их символы есть в периодической таблице.

Элемент Символ Элемент Символ
алюминий Ал железо Fe (из железа )
бром Бр свинец Pb (из свинца )
кальций Са магний мг
углерод С ртуть Hg (из Hydrargyrum )
хлор Кл азот Н
хром Кр кислород О
кобальт Со калий К (из калия )
медь Cu (из меди ) кремний Си
фтор Ф серебро Ag (из argentum )
золото Au (от Aurum ) натрий Na (из натрия )
гелий Он сера С
водород Х олово Sn (из стали )
йод я цинк Цинк

Традиционно первооткрыватель (или первооткрыватели) нового элемента дает ему имя. Однако до тех пор, пока название не будет признано Международным союзом теоретической и прикладной химии (IUPAC), рекомендуемое название нового элемента основано на латинском слове (словах) для его атомного номера. Например, элемент 106 назывался уннилгексий (Unh), элемент 107 — уннилсептий (Uns), а элемент 108 — уннилокций (Uno) в течение нескольких лет. Эти элементы теперь названы в честь ученых или мест; например, элемент 106 теперь известен как сиборгий (Sg) в честь Гленна Сиборга, лауреата Нобелевской премии, который принимал активное участие в открытии нескольких тяжелых элементов.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка браузера на прием файлов cookie

Существует множество причин, по которым файл cookie не может быть установлен правильно. Ниже приведены наиболее распространенные причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки браузера, чтобы принять файлы cookie, или спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файл cookie.
  • Ваш браузер не поддерживает файлы cookie. Попробуйте другой браузер, если вы подозреваете это.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы это исправить, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Предоставить доступ без файлов cookie потребует от сайта создания нового сеанса для каждой посещаемой вами страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в файле cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только та информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, если вы не решите ввести его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступ к остальной части вашего компьютера, и только сайт, создавший файл cookie, может его прочитать.

Chem4Kids.com: Атомы: Структура



Атомы являются основой химии. Они являются основой всего во Вселенной. Как известно, материя состоит из атомов. Твердые тела состоят из плотно упакованных атомов, в то время как газы имеют разбросанные атомы. Мы рассмотрим основы, такие как атомная структура и связи между атомами. Когда вы узнаете больше, вы можете перейти к страницам реакций и биохимии и посмотреть, как атомы образуют соединения, которые помогают биологическому миру выжить.

Существуют ли частицы материи, которые меньше атомов? Конечно есть. Сверхмалые частицы можно найти внутри кусочков атомов. Эти субатомные частицы включают нуклонов и кварков . Химики-ядерщики и физики работают вместе на ускорителях частиц , чтобы обнаружить присутствие этих крошечных, крошечных, крошечных частиц материи. Однако наука основана на атоме, потому что это мельчайшая отдельная единица материи.

Несмотря на то, что существует множество сверхмалых атомных частиц, вам нужно запомнить только три основные части атома: электроны, протоны и нейтроны.Что такое электроны, протоны и нейтроны? Электроны — самые маленькие из трех частиц, из которых состоят атомы. Электроны находятся в оболочках или орбиталях, окружающих ядро ​​атома. Протоны и нейтроны находятся в ядре . Они группируются в центре атома. Это все, что вам нужно помнить. Три легких произведения!

В периодической таблице насчитывается почти 120 известных элементов. (117, пока мы это пишем) Химики и физики каждый день пытаются создавать новые в своих лабораториях.Атомы разных элементов имеют разное количество электронов, протонов и нейтронов. Каждый элемент уникален и имеет атомный номер. Это число говорит вам о количестве протонов в каждом атоме элемента. Атомный номер также называют числом протона.

Вы можете видеть, что каждая часть атома помечена знаком «+», «-» или «0». Эти символы относятся к заряду частицы. Вы когда-нибудь слышали о том, что вас может ударить током от розетки, статического электричества или молнии? Все это связано с электрическими зарядами.Заряды также обнаруживаются в мельчайших частицах материи.

Электрон всегда имеет «-» или отрицательный заряд. Протон всегда имеет «+» или положительный заряд. Если заряд всего атома равен «0» или нейтральному, количество положительных и отрицательных зарядов равно. Нейтральные атомы имеют одинаковое количество электронов и протонов. Третья частица – нейтрон. Он имеет нейтральный заряд, также известный как нулевой заряд.

Поскольку количество протонов в атоме не меняется, меньшее количество или дополнительные электроны могут создать особый атом, называемый ионом. Катионы имеют меньше электронов и имеют положительный заряд. Анионы имеют дополнительные электроны, которые создают отрицательный заряд.

Самое маленькое письмо в мире (видео Стэнфордского университета)


The Structure of the Atom

В письме в этот журнал на прошлой неделе г-н Содди обсуждал связь моей теории атомного ядра с радиоактивными явлениями и, кажется, у него сложилось впечатление, что я придерживаюсь мнения, что ядро должно полностью состоять из положительного электричества. На самом деле, я не обсуждал подробно вопрос о строении ядра, кроме утверждения, что оно должно иметь результирующий положительный заряд. Мне кажется несомненным, что α-частица действительно возникает из ядра, и я некоторое время думал, что данные указывают на вывод о сходном происхождении частицы. Этот момент обсуждался более подробно в недавней статье Бора ( Phil. Mag. , сентябрь 1913 г.). Самым сильным доказательством в поддержку этой точки зрения, на мой взгляд, является (1) то, что β-лучи, как и α-лучи, не зависят от физических и химических условий, и (2) что энергия, испускаемая в виде β- и γ-лучей в результате преобразования атома радия C намного больше, чем можно было бы ожидать, накопленное во внешней электронной системе.В то же время я считаю весьма вероятным, что значительная часть лучей, испускаемых радиоактивными веществами, возникает из-за внешних электронов. Однако это, вероятно, вторичный эффект, возникающий в результате первичного выброса β-частицы из ядра.

Первоначальное предположение ван дер Брука о том, что заряд ядра равен атомному номеру, а не половине атомного веса, кажется мне очень многообещающим. Эта идея уже использовалась Бором в его теории строения атомов.Самые сильные и наиболее убедительные доказательства в поддержку этой гипотезы можно найти в статье Мозли в The Philosophical Magazine за этот месяц. Там он показывает, что частоту рентгеновского излучения ряда элементов можно просто объяснить, если число единичных зарядов ядра равно атомному номеру. Казалось бы, заряд ядра есть фундаментальная константа, определяющая физические и химические свойства атома, а атомный вес, хотя и приблизительно следует порядку заряда ядра, но, вероятно, является сложной функцией последнего, зависящей от детальное строение ядра.

Структура атома — Атомная структура — AQA — GCSE Chemistry (Single Science) Revision — AQA

Субатомные частицы

Ядра всех атомов содержат субатомные частицы, называемые протонами. Ядра большинства атомов также содержат нейтроны.

Структура атома углерода, не в масштабе

4 8 8 7 +1
относительная масса относительный заряд
8 1
0
0
Electronic очень маленький Масса электрона очень мала по сравнению с протоном или нейтроном. Поскольку ядро ​​содержит протоны и нейтроны, большая часть массы атома сосредоточена в его ядре.

Протоны и электроны имеют равные и противоположные электрические заряды.

Помните, что P ротонов являются P положительными, а N нейтронов N нейтральными.

Атомная структура – ​​обзор

1.09.6.2.2 Подвижность при конечной температуре

Релаксированная атомная структура из Раздел 1.09.6.2.1 при нулевом напряжении может быть использована для построения начальных условий для МД моделирования для расчета подвижности дислокаций при конечной температуре. Дислокация в Раздел 1.09.6.2.1 является периодической по своей длине ( z -оси) с относительно коротким повторением 21¯1¯2. В реальном кристалле флуктуация линии дислокации может иметь важное значение для его подвижности. Таким образом, мы увеличиваем длину окна моделирования в пять раз по оси z , воспроизводя атомную структуру перед началом моделирования МД. Таким образом, ячейка моделирования МД имеет размеры 30[111], 401¯10, 101¯1¯2 по осям x , y , z соответственно и содержит 10 7070 атомов.

В следующем разделе мы вычисляем скорость дислокации при нескольких напряжениях сдвига при T  = 300 K. Для простоты моделирование, в котором применяется напряжение сдвига, выполняется в ансамбле NVT. Однако объем моделируемой ячейки необходимо отрегулировать от значения нулевой температуры, чтобы учесть эффект теплового расширения. Размеры ячейки корректируются с помощью серии симуляций NVT с использованием подхода, аналогичного тому, который используется в , раздел 1. 09.6.1.2 , за исключением того, что ε xx , ε yy , ε zz допускается настраивать независимо. Как мы нашли в раздел 1.09.6.1.2 , что для идеального кристалла тепловой штамм при 300 К составляет ε = 0,00191, ε xx , ε yy , ε zz инициализируются этим значением в начале уравновешивания.

После уравновешивания в течение 10 пс выполняется МД-моделирование при различных напряжениях сдвига σ xy до 100 МПа.Моделирование выполнено методом цепочки NVT с использованием алгоритма Velocity Verlet с Δ t  = 1 фс. Касательное напряжение создается за счет добавления внешних сил к поверхностным атомам так же, как в Раздел 1.09.6.2.1 . Атомарные конфигурации сохраняются периодически каждые 1 пс. Для каждой сохраненной конфигурации вычисляется параметр CSD 45 каждого атома. Из-за тепловых флуктуаций некоторые атомы в объеме также могут иметь значения CSD, превышающие 0,6 Å 2 .Следовательно, только атомы, значение CSD которых находится в диапазоне от 4,5 до 10,0 Å 2 , классифицируются как атомы ядра дислокации.

На рис. 9(a) показано среднее положение 〈 x 〉 атомов ядра дислокации в зависимости от времени при различных приложенных напряжениях. Из-за PBC в направлении x возможно иметь определенные атомы ядра на левом краю ячейки с другими атомами ядра на правом краю ячейки, когда ядро ​​дислокации перемещается к границе ячейки.В этом случае нам нужно убедиться, что все атомы находятся в пределах ближайшего изображения друг друга при вычислении их среднего положения в направлении x . Когда конфигурации сохраняются достаточно часто, дислокация не может переместиться более чем на длину коробки в направлении x с момента последнего сохранения конфигурации. Следовательно, среднее положение дислокации 〈 x 〉 на данном снимке принимается за ближайшее изображение среднего положения дислокации на предыдущем снимке, так что 〈 x 〉〈 t 〉 строится в Рис. 9( а) выглядят как гладкие кривые.

Рис. 9. (а) Среднее положение атомов ядра дислокации в зависимости от времени при различных напряжениях сдвига. (б) Скорость дислокации как функция σ xy при Тл = 300 К.  = 0 имеют нулевой наклон и ненулевую кривизну, что указывает на то, что дислокация ускоряется. В конце концов, 〈 x 〉 становится линейной функцией t , указывая на то, что дислокация перешла в стационарное движение.Скорость дислокации рассчитывается по наклону 〈 x 〉( t ) во второй половине периода времени. На рис. 9(b) показана скорость дислокации, полученная таким образом, как функция приложенного напряжения сдвига. Скорость дислокации оказывается линейной функцией напряжения в нижнем пределе напряжения с подвижностью M=v/σxy·b=2,6×104 Па-1с-1. Подвижность дислокаций является одним из важных входных параметров материала для моделирования динамики дислокаций (ДД). 46–48

Для точного прогнозирования скорости и подвижности дислокаций необходимо проводить МД-моделирование в течение достаточно длительного времени, чтобы гарантировать, что наблюдается стационарное движение дислокаций. Размер ячейки моделирования также необходимо варьировать, чтобы результаты сходились к пределу большой ячейки. Для больших ячеек моделирования обычно необходимы параллельные вычисления для ускорения моделирования. Программа LAMMPS 49 (http://lammps.sandia.gov), разработанная в Sandia National Labs, представляет собой программу параллельного моделирования, которая широко используется для МД-моделирования твердых тел.

Гл. 2 Резюме — Химия: атомы первые 2e

2.1 Ранние идеи в атомной теории

Древние греки предположили, что материя состоит из очень маленьких частиц, называемых атомами.Дальтон постулировал, что каждый элемент имеет характерный тип атома, который отличается по свойствам от атомов всех других элементов, и что атомы разных элементов могут соединяться в фиксированных, малых, целочисленных отношениях, образуя соединения. Все образцы конкретного соединения имеют одинаковые пропорции элементов по массе. Когда два элемента образуют разные соединения, данная масса одного элемента будет соединяться с массой другого элемента в небольшом, целочисленном отношении. При любом химическом изменении атомы не создаются и не разрушаются.

2.2 Эволюция атомной теории

Хотя никто на самом деле не видел атома изнутри, эксперименты многое продемонстрировали в отношении строения атома. Электронно-лучевая трубка Томсона показала, что атомы содержат маленькие отрицательно заряженные частицы, называемые электронами. Милликен открыл, что существует фундаментальный электрический заряд — заряд электрона. Эксперимент Резерфорда с золотой фольгой показал, что атомы имеют маленькое, плотное, положительно заряженное ядро; положительно заряженные частицы внутри ядра называются протонами.Чедвик обнаружил, что ядро ​​также содержит нейтральные частицы, называемые нейтронами. Содди продемонстрировал, что атомы одного и того же элемента могут различаться по массе; они называются изотопами.

2.3 Атомная структура и символизм

Атом состоит из небольшого положительно заряженного ядра, окруженного электронами. Ядро содержит протоны и нейтроны; его диаметр примерно в 100 000 раз меньше диаметра атома. Массу одного атома обычно выражают в атомных единицах массы (а.е.м.), которую называют атомной массой.Аму определяется как ровно 112 112 массы атома углерода-12 и равна 1,6605 × × 10 -24 г.

Протоны — относительно тяжелые частицы с зарядом 1+ и массой 1,0073 а.е.м. Нейтроны представляют собой относительно тяжелые частицы без заряда и массой 1,0087 а.е.м. Электроны — легкие частицы с зарядом 1– и массой 0,00055 а.е.м. Число протонов в ядре называется атомным номером (Z) и является свойством, определяющим элементную идентичность атома.Сумма чисел протонов и нейтронов в ядре называется массовым числом и, выраженная в а.е.м., примерно равна массе атома. Атом нейтрален, когда он содержит одинаковое количество электронов и протонов.

Изотопы элемента – это атомы с одинаковым атомным номером, но разными массовыми числами; изотопы элемента, таким образом, отличаются друг от друга только числом нейтронов в ядре. Когда встречающийся в природе элемент состоит из нескольких изотопов, атомная масса элемента представляет собой среднее значение масс вовлеченных изотопов.Химический символ идентифицирует атомы в веществе с помощью символов, которые представляют собой одно-, двух- или трехбуквенные сокращения для атомов.

2,4 Химические формулы

Молекулярная формула использует химические символы и нижние индексы для указания точного количества различных атомов в молекуле или соединении. Эмпирическая формула дает простейшее целочисленное соотношение атомов в соединении. Структурная формула указывает на расположение связей атомов в молекуле.Шаростержневые модели и модели с заполнением пространства показывают геометрическое расположение атомов в молекуле. Изомеры – это соединения с одинаковой молекулярной формулой, но разным расположением атомов.

Author: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.